
Algorithms [Compiled on May 2, 2011] Spring 2011

Homework Assignment #6

Note

This assignment is due 2:10PM Monday, May 9, 2011. Please write or type your answers

on A4 (or similar size) paper. Drop your homework by the due time in Yih-Kuen Tsay’s

mail box on the first floor of Management College Building II. Late submission will be

penalized by 20% for each working day overdue. You may discuss the problems with

others, but copying answers is strictly forbidden.

There are five problems in this assignment, each accounting for 20 points. There is also

a bonus problem, which is worth 20 points.

Problems

1. Perform insertions of the numbers 6, 5, 2, 0, 3, 4, 1 (in this order) into an empty

AVL tree. Show each AVL tree after a number has been inserted. If re-balancing

operations are performed, please also show the tree before re-balancing and indicate

what type of rotation is used in the re-balancing.

2. The Partition procedure for the Quicksort algorithm discussed in class is as follows,

where Middle is a global variable.

Partition (X,Left ,Right);

begin

pivot := X[Left ];

L := Left ; R := Right ;

while L < R do

while X[L] ≤ pivot and L ≤ Right do L := L + 1;

while X[R] > pivot and R ≥ Left do R := R− 1;

if L < R then swap(X[L], X[R]);

Middle := R;

swap(X[Left ], X[Middle])

end

(a) Apply the Partition procedure to the following array (assuming that the first

element is chosen as the pivot).
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9 14 6 10 13 12 2 11 1 7 15 3 5 8 16 4

Show the result after each exchange (swap) operation.

(b) Apply the Quicksort algorithm to the above array. Show the result after each

partition operation.

3. (6.10) Find an adequate loop invariant for the main while loop in the Partition

procedure of the Quicksort algorithm, which is sufficient to show that after the

execution of the last two assignment statements the array is properly partitioned

by X[Middle]. Please express the loop invariant as precisely as possible, using

mathematical notation.

4. (6.21) The input is a set S with n real numbers. Design an O(n) time algorithm

to find a number that is not in the set. Prove that Ω(n) is a lower bound on the

number of steps required to solve this problem.

5. (6.32) Prove that the sum of the heights of all nodes in a complete binary tree with

n nodes is at most n− 1. (A complete binary tree with n nodes is one that can be

compactly represented by an array A of size n, where the root is stored in A[1] and

the left and the right children of A[i], 1 ≤ i ≤ bn
2
c, are stored respectively in A[2i]

and A[2i + 1]. Notice that, in Manber’s book a complete binary tree is referred to

as a balanced binary tree and a full binary tree as a complete binary tree. Manber’s

definitions seem to be less frequently used. Do not let the different names confuse

you. “Balanced binary tree” in the problem description is the same as “complete

binary tree”)

6. (Bonus) Prove that the loop invariant you proposed for the Partition procedure is

indeed a loop invariant. (Hint: follow “Note on Chapter 2 of Manber: Proving a

Loop Invariant”; you will need to handle the nested loops as well.)
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