Suggested Solutions to HW \#6

1. Perform insertions of the numbers $6,5,2,0,3,4,1$ (in this order) into an empty AVL tree. Show each AVL tree after a number has been inserted. If re-balancing operations are performed, please also show the tree before re-balancing and indicate what type of rotation is used in the re-balancing.

Solution.

2. The Partition procedure for the Quicksort algorithm discussed in class is as follows, where Middle is a global variable.

Partition (X, Left, Right);

begin

pivot $:=X[$ Left $] ;$
$L:=$ Left; $R:=$ Right;
while $L<R$ do
while $X[L] \leq$ pivot and $L \leq$ Right do $L:=L+1$;
while $X[R]>$ pivot and $R \geq$ Left do $R:=R-1$;
if $L<R$ then $\operatorname{swap}(X[L], X[R])$;
Middle $:=R$;
$\operatorname{swap}(X[$ Left $], X[$ Middle $])$
end
(a) Apply the Partition procedure to the following array (assuming that the first element is chosen as the pivot).

9	14	6	10	13	12	2	11	1	7	15	3	5	8	16	4

Show the result after each exchange (swap) operation.

Solution.

9	14	6	10	13	12	2	11	1	7	15	3	5	8	16	4
9	(4)	6	10	13	12	2	11	1	7	15	3	5	8	16	(14)
9	4	6	(8)	13	12	2	11	1	7	15	3	5	(10)	16	14
9	4	6	8	(5)	12	2	11	1	7	15	3	(13)	10	16	14
9	4	6	8	5	(3)	2	11	1	7	15	(12)	13	10	16	14
9	4	6	8	5	3	2	(7)	1	(11)	15	12	13	10	16	14
(1)	4	6	8	5	3	2	7	(9)	11	15	12	13	10	16	14

(b) Apply the Quicksort algorithm to the above array. Show the result after each partition operation.

Solution.

9	14	6	10	13	12	2	11	1	7	15	3	5	8	16	4
1	4	6	8	5	3	2	7	(9)	11	15	12	13	10	16	14
(1)	4	6	8	5	3	2	7	(9)	11	15	12	13	10	16	14
(1)	3	2	(4)	5	8	6	7	(9)	11	15	12	13	10	16	14
(1)	2	(3)	(4)	5	8	6	7	(9)	11	15	12	13	10	16	14
(1)	2	(3)	(4)	(5)	8	6	7	(9)	11	15	12	13	10	16	14
(1)	2	(3)	(4)	(5)	7	6	(8)	(9)	11	15	12	13	10	16	14
(1)	2	(3)	(4)	(5)	6	(7)	(8)	(9)	11	15	12	13	10	16	14
(1)	2	(3)	(4)	(5)	6	(7)	(8)	(9)	10	(11)	12	13	15	16	14
(1)	2	(3)	(4)	(5)	6	(7)	(8)	(9)	10	(11)	(12)	13	15	16	14
(1)	2	(3)	(4)	(5)	6	(7)	(8)	(9)	10	(11)	(12)	(13)	15	16	14
(1)	2	(3)	(4)	(5)	6	(7)	(8)	(9)	10	(11)	(12)	(13)	14	(15)	16

3. (6.10) Find an adequate loop invariant for the main while loop in the Partition procedure of the Quicksort algorithm, which is sufficient to show that after the execution of the
last two assignment statements the array is properly partitioned by $X[$ Middle]. Please express the loop invariant as precisely as possible, using mathematical notation.

Solution. The algorithm assumes that Left $<$ Right. This condition holds throughout the algorithm and we will keep it implicit. A suitable loop invariant for the main while loop is as follows:

$$
\begin{array}{ll}
& \text { pivot }=X[\text { Left }] \\
\wedge & \forall i(\text { Left } \leq i<L \Longrightarrow X[i] \leq \text { pivot }) \\
\wedge & \forall j(R<j \leq \text { Right } \Longrightarrow \text { pivot }<X[j]) \\
\wedge & \text { Left } \leq L \leq \text { Right }+1 \\
\wedge & \text { Left } \leq R \leq \text { Right } \\
\wedge & (L \nless R) \Longrightarrow(L-1=R)
\end{array}
$$

This loop invariant is maintained before and after every iteration of the loop. Note that the inequalities $i<L$ and $R<j$ in the second and third conjuncts are strict. This is so because when the condition $L<R$ does not hold, the statement $\operatorname{swap}(X[L], X[R])$ will not be performed. After the while loop terminates with $L \nless R$ and the following two statements are executed, we can conclude:

$$
\begin{array}{ll}
& \text { pivot }=X[\text { Middle }] \\
\wedge & \forall i(\text { Left } \leq i \leq \text { Middle } \Longrightarrow X[i] \leq \text { pivot }) \\
\wedge & \forall j(\text { Middle }<j \leq \text { Right } \Longrightarrow \text { pivot }<X[j])
\end{array}
$$

which is the (post-)condition desired of the Partition algorithm, indicating that the algorithm is indeed correct.

