Suggested Solutions to HW #6

1. Perform insertions of the numbers 6, 5, 2, 0, 3, 4, 1 (in this order) into an empty AVL tree. Show each AVL tree after a number has been inserted. If re-balancing operations are performed, please also show the tree before re-balancing and indicate what type of rotation is used in the re-balancing.

Solution.

2. The *Partition* procedure for the Quicksort algorithm discussed in class is as follows, where *Middle* is a global variable.

Partition (X, Left, Right);

begin

 $\begin{array}{l} pivot := X[Left];\\ L := Left; \ R := Right;\\ \textbf{while } L < R \ \textbf{do}\\ \textbf{while } X[L] \leq pivot \ \text{and } L \leq Right \ \textbf{do } L := L + 1;\\ \textbf{while } X[R] > pivot \ \text{and } R \geq Left \ \textbf{do } R := R - 1;\\ \textbf{if } L < R \ \textbf{then } swap(X[L], X[R]);\\ Middle := R;\\ swap(X[Left], X[Middle]) \end{array}$

\mathbf{end}

(a) Apply the *Partition* procedure to the following array (assuming that the first element is chosen as the pivot).

9	14	6	10	13	12	2	11	1	7	15	3	5	8	16	4
---	----	---	----	----	----	---	----	---	---	----	---	---	---	----	---

Show the result after each exchange (swap) operation.

Solution.

9	14	6	10	13	12	2	11	1	7	15	3	5	8	16	4
9	(4)	6	10	13	12	2	11	1	7	15	3	5	8	16	(14)
9	4	6	(8)	13	12	2	11	1	7	15	3	5	(10)	16	14
9	4	6	8	(5)	12	2	11	1	7	15	3	(13)	10	16	14
9	4	6	8	5	(3)	2	11	1	7	15	(12)	13	10	16	14
9	4	6	8	5	3	2	(7)	1	(11)	15	12	13	10	16	14
(1)	4	6	8	5	3	2	7	(9)	11	15	12	13	10	16	14

(b) Apply the Quicksort algorithm to the above array. Show the result after each partition operation.

Solution.

	9	14	6	10	13	12	2	11	1	7	15	3	5	8	16	4
	1	4	6	8	5	3	2	7	(9)	11	15	12	13	10	16	14
(1)	4	6	8	5	3	2	7	(9)	11	15	12	13	10	16	14
(1)	3	2	(4)	5	8	6	7	(9)	11	15	12	13	10	16	14
(1)	2	(3)	(4)	5	8	6	7	(9)	11	15	12	13	10	16	14
(1)	2	(3)	(4)	(5)	8	6	7	(9)	11	15	12	13	10	16	14
(1)	2	(3)	(4)	(5)	7	6	(8)	(9)	11	15	12	13	10	16	14
(1)	2	(3)	(4)	(5)	6	(7)	(8)	(9)	11	15	12	13	10	16	14
(1)	2	(3)	(4)	(5)	6	(7)	(8)	(9)	10	(11)	12	13	15	16	14
(1)	2	(3)	(4)	(5)	6	(7)	(8)	(9)	10	(11)	(12)	13	15	16	14
(1)	2	(3)	(4)	(5)	6	(7)	(8)	(9)	10	(11)	(12)	(13)	15	16	14
(1)	2	(3)	(4)	(5)	6	(7)	(8)	(9)	10	(11)	(12)	(13)	14	(15)	16

3. (6.10) Find an adequate loop invariant for the main while loop in the *Partition* procedure of the Quicksort algorithm, which is sufficient to show that after the execution of the

last two assignment statements the array is properly partitioned by X[Middle]. Please express the loop invariant as precisely as possible, using mathematical notation.

Solution. The algorithm assumes that Left < Right. This condition holds throughout the algorithm and we will keep it implicit. A suitable loop invariant for the main while loop is as follows:

$$\begin{array}{l} pivot = X[Left] \\ \land \quad \forall i(Left \leq i < L \implies X[i] \leq pivot) \\ \land \quad \forall j(R < j \leq Right \implies pivot < X[j]) \\ \land \quad Left \leq L \leq Right + 1 \\ \land \quad Left \leq R \leq Right \\ \land \quad (L \not < R) \implies (L - 1 = R) \end{array}$$

This loop invariant is maintained before and after every iteration of the loop. Note that the inequalities i < L and R < j in the second and third conjuncts are strict. This is so because when the condition L < R does not hold, the statement swap(X[L], X[R]) will not be performed. After the while loop terminates with $L \not\leq R$ and the following two statements are executed, we can conclude:

$$\begin{array}{l} pivot = X[Middle] \\ \land \quad \forall i (Left \leq i \leq Middle \implies X[i] \leq pivot) \\ \land \quad \forall j (Middle < j \leq Right \implies pivot < X[j]) \end{array}$$

which is the (post-)condition desired of the *Partition* algorithm, indicating that the algorithm is indeed correct. \Box