
Algorithms [Compiled on June 13, 2011] Spring 2011

Suggested Solutions to HW #8

1. (7.1) Consider the problem of finding balance factors in binary trees discussed in class

(see slides for “Design by Induction”). Solve this problem using DFS. You need only to

define preWORK and postWORK.

Solution. (Yu-Chieh Tu)

preWORK :

v.height := 0;

v.balance factor := 0;

postWORK :

v.height := MAX (v.height , w.height + 1);

if w = v.leftchild then

v.balance factor := v.balance factor + (w.height + 1);

else if w = v.rightchild then

v.balance factor := v.balance factor − (w.height + 1);

Note that preWORK is performed at the time the vertex is marked, and postWORK is

performed after we backtrack from an edge or find that the edge leads to a marked vertex.

2

2. (7.3) Given as input a connected undirected graph G, a spanning tree T of G, and a vertex

v, design an algorithm to determine whether T is a valid DFS tree of G rooted at v. In

other words, determine whether T can be the output of DFS under some order of the

edges starting with v. The running time of the algorithm should be O(|E|+ |V |).

Solution. (created by Chi-Jian Luo, modified by Yu-Chieh Tu)

To determine whether T , a subgraph of G, is a DFS tree of G, we have to consider two

constraints: (1) T is a spanning tree of G and (2) there is no edge in G that is a cross edge

for T . For the first constraint, we have to check if there is no cycle in T and all vertices

in G can be reached by T . For the second constraint, we have to check if there is no edge

in G that connects two subtrees in T .

Algorithm isDFSTree(G,T, v)

Input: G = (V,E) (an undirected connected graph in the adjacency-list representation),

T = (V,E′ ⊆ E) (a spanning tree of G in the adjacency-list representation), v (a vertex

of G).

Output: result (a boolean variable, the default is true).

begin

1

mark v;

for all edges (v, w) ∈ E′ do

if w is marked and w.parent 6= v then

result := false; {T contains a cycle and is not a tree.}
else if w is unmarked then

w.parent := v;

isDFSTree(G,T,w);

for all edges (v, w) ∈ E do

if w is unmarked then

result := false; {(v, w) is a cross edge or w can’t be reached from T .}

end 2

5. (7.38) Given a directed acyclic graph G = (V,E), find a simple (directed) path in G that

has the maximum number of edges among all simple paths in G. The algorithm should

run in linear time.

Solution. (Jinn-Shu Chang)

We design an algorithm that is similar to the topological sorting algorithm in Fig 7.13 in

Manber’s book. We use length to denote the length of the path from a source vertex to

the vertex which we are looking at. Initially, we set the length in all vertices to be zero.

When we remove a vertex v from the Queue, we update the length of every successor

of v, say w, if v.length + 1 is larger than w.length, to record the length of the longest

path currently. When all the vertices are traversed, we can recover the longest path by

backtracing from the latest vertex traversed.

Algorithm FindLongestPath(G)

Input: G = (V,E) (a directed acyclic graph)

Output: A Stack which records the longest path.

begin

Initialize v.Indegree for every vertex v; {e.g. by DFS}
for all vertices v ∈ V do

if v.Indegree = 0 then put v in Queue; {which are the source vertices}
repeat

remove vertex v from Queue;

for all edges (v, w) do

if v.length + 1 > w.length then

w.length := v.length + 1;

w.pre := v;

w.Indegree := w.Indegree − 1;

if w.Indegree = 0 then put w in Queue;

2

if Queue is empty then vpath := v;

until Queue is empty

put vpath on Stack;

while vpath has a predecessor do

put vpath .pre on Stack;

vpath := vpath .pre;

end

Since the main part of this algorithm is essentially the topological sorting algorithm, the

time bound for traversing the vertices is O(|V |+|E|). The last while loop for recording the

longest path runs in O(|V |) time. Hence, this algorithm runs in O(|V |+ |E|) + O(|V |) =

O(|V |+ |E|) time. 2

3

