Suggested Solutions to HW \#9

1. (7.6) Consider Algorithm Single_Source_Shortest_Paths (discussed in class). Prove that the subgraph consisting of all the edges that belong to shortest paths from v, found during the execution of the algorithm, is a tree rooted at v.

Solution.

We can conclude that the subgraph is a tree rooted at v from the following two facts.
(a) For every vertex $u \neq v$ in the subgraph, there is only one path from v to u in the subgraph.
(b) The subgraph is acyclic.

The fact 1(a) is trivial since a vertex u is added only if u was unmarked and (1) there is an edge (v, u) or (2) there is a shortest path in the subgraph from v to some vertex w and there is an edge (w, u). The fact $1(\mathrm{~b})$ is ensured since a new unmarked vertex is added at each iteration of the algorithm.
2. (7.12)
(a) Give an example of a weighted connected undirected graph $G=(V, E)$ and a vertex v, such that the minimum-cost spanning tree of G is the same as the shortest-path tree rooted at v.
(b) Give an example of a weighted connected undirected graph $G=(V, E)$ and a vertex v, such that the minimum-cost spanning tree of G is very different from the shortest path tree rooted at v. Can the two trees be completely disjoint?

Solution.

(a) The graph G is shown below. The minimum-cost spanning tree of G and the shortest path tree rooted at v are represented by thick edges.

(b) The graph G is shown below.

The minimum-cost spanning tree of G is represented by the thick edges in the following graph.

The shortest path tree rooted at v is represented by the thick edges in the following graph.

It is impossible that the two trees are completely disjoint. Let T_{m} denote the minimum cost spanning tree of G and T_{s} be the shortest path tree rooted at v. Consider the following two cases: (1) v has only one edge; (2) v has more than one edge. In case (1), the only edge must be both in T_{m} and in T_{s}. Otherwise v will be disconnected from T_{m} and from T_{s}. In case (2), let (v, u) be the minimum weighted edge among all edges of v. Then (v, u) must belong to both T_{m} and T_{s}. If (v, u) is not in T_{m}, then T_{m} must include some other edge (v, w). By replacing (v, w) with (v, u) in T_{m}, we get a new tree with lower weight, which contradicts that T_{m} is the minimum-cost spanning tree. If (v, u) is not in T_{s}, then the shortest path π from v to u must include some other edge (v, w). Since (v, u) is lighter than (v, w), the edge (v, u) is shorter than π, which contradicts that π is the shortest path from v to u.
3. (7.16 modified)
(a) Run the strongly connected components algorithm on the directed graph shown in Figure 1. When traversing the graph, the algorithm should follow the given DFS numbers. Show the High values as computed by the algorithm in each step.
(b) Add the edge $(4,2)$ to the graph and discuss the changes this makes to the execution of the algorithm.

Figure 1: A directed graph with DFS numbers
Solution.
We use the DFS number as the vertex ID.
(a) The High values computed are shown below.

Vertex	1	2	3	4	5	6	7	8	9
DFS_N	9	8	7	6	5	4	3	2	1
1	9	-	-	-	-	-	-	-	-
2	9	8	-	-	-	-	-	-	-
3	9	8	7	-	-	-	-	-	-
(4)	9	8	7	6	-	-	-	-	-
3	9	8	7	6	-	-	-	-	-
5	9	8	7	6	5	-	-	-	-
(6)	9	8	7	6	5	4	-	-	-
(5)	9	8	7	6	5	4	-	-	-
(3)	9	8	7	6	5	4	-	-	-
2	9	8	7	6	5	4	-	-	-
7	9	8	7	6	5	4	3	-	-
$(8$	9	8	7	6	5	4	3	2	-
7	9	8	7	6	5	4	3	2	-
9	9	8	7	6	5	4	3	2	9
7	9	8	7	6	5	4	9	2	9
2	9	9	7	6	5	4	9	2	9
(1)	9	9	7	6	5	4	9	2	9

(b) Adding the edge $(4,2)$ will make all vertices belong to the same strongly connected component. The new High values computed are shown below.

Vertex	1	2	3	4	5	6	7	8	9
DFS_N	9	8	7	6	5	4	3	2	1
1	9	-	-	-	-	-	-	-	-
2	9	8	-	-	-	-	-	-	-
3	9	8	7	-	-	-	-	-	-
4	9	8	7	8	-	-	-	-	-
3	9	8	8	8	-	-	-	-	-
5	9	8	8	8	5	-	-	-	-
6	9	8	8	8	5	6	-	-	-
5	9	8	8	8	6	6	-	-	-
3	9	8	8	8	6	6	-	-	-
2	9	8	8	8	6	6	-	-	-
7	9	8	8	8	6	6	3	-	-
8	9	8	8	8	6	6	3	7	-
7	9	8	8	8	6	6	7	7	-
9	9	8	8	8	6	6	3	7	9
7	9	8	8	8	6	6	9	7	9
2	9	9	8	8	6	6	9	7	9
1	9	9	8	8	6	6	9	7	9

