
Algorithms [Compiled on May 16, 2011] Spring 2011

Suggested Solutions to Midterm Problems

1. Consider the following theorem regarding Gray codes, for which we have sketched a proof
by induction in class.

There exists a Gray code of length dlog2 ke for any number k ≥ 2 of objects.
The Gray codes for the even values of k are closed, and the Gray codes for odd
values of k are open.

Please complete the proof (giving sufficient details); in particular, try to be precise about
the length of a code in the proof. You should assume and use the following facts in your
proof:

(a) Given a closed Gray code for an even number k (≥ 2) of objects, we can construct a
closed Gray code with one additional bit for 2k objects.

(b) Given a closed Gray code of length i for 2i (i ≥ 1) objects, we can construct an open
Gray code of the same length for any odd k, 2i−1 < k < 2i, of objects.

(c) Given an open Gray code for an odd number k (≥ 2) of objects, we can construct a
closed Gray code with one additional bit for 2k objects.

Solution. We first state and prove two lemmas that will help better structure the main
proof.

• (Lemma 1) There exists a closed Gray code of length i (= dlog2 ke) for any number
k = 2i (i ≥ 1) of objects.
The proof is by induction on i.
Base case (i = 1, i.e., k = 2): {0, 1} constitute a closed Gray code of length 1 for 2
objects.
Inductive step: Consider k = 2i = 2 × 2i−1 (i > 1) objects. From the Induction
Hypothesis and Fact 1a, we can construct a closed Gray code with (i − 1) + 1 = i
bits for the k objects

• (Lemma 2) There exists an open Gray code of length dlog2 ke for any odd number
k > 2 of objects.
Every odd number k > 2 is properly bounded by 2i−1 and 2i for some i > 1. From
Lemma 1 and Fact 1b, we can construct for the k objects an open Gray code of
length i which equals dlog2 ke.

The main proof is by induction on the number k of objects.

Base case (k = 2i for i ≥ 1): this follows from Lemma 1.

Inductive step: The case when k is odd follows from Lemma 2. Now, let k = 2j. There
are two cases:

• j is even. From the Induction Hypothesis and Fact 1, we can construct a closed Gray
code with dlog2 je+ 1 for 2j objects. dlog2 je+ 1 = d1 + log2 je = dlog2 2 + log2 je =
dlog2 2je = dlog2 ke, so the length is as required.

1



• j is odd. From the Induction Hypothesis and Fact 3, we can construct a closed Gray
code with dlog2 je + 1 for 2j objects. Analogous to the previous case, the length is
as required.

2

2. Consider the following two-player game: given a positive integer N , player A and player
B take turns counting to N . In his turn, a player may advance the count by 1 or 2. For
example, player A may start by saying “1, 2”, player B follows by saying “3”, player A
follows by saying “4”, etc. The player who eventually has to say the number N loses the
game.

A game is determined if one of the two players always has a way to win the game. Prove
that the counting game as described is determined for any positive integer N ; the winner
may differ for different given integers. You must use induction in your proof. (Hint: think
about the remainder of the number N divided by 3.)

Solution. We first prove the following claim:

When N = 3k + 1 for some k ≥ 0, player B can always win the game.

The proof is by induction on k.

Base case (k = 0, i.e., N = 1): player A has no other choice but say 1 and hence player
B wins.

Inductive step (k ≥ 1, i.e., N = 3k + 1 ≥ 4): player A starts either by “1” or “1, 2”. In
both cases, player B can always count to 3. At this point we have the situation analogous
to that the two players are to play a game with N = 3(k − 1) + 1, in which player B can
always win from the induction hypothesis.

We next show that, when N = 3k + 2 or N = 3(k + 1) for some k ≥ 0, player A can
always win the game. In the case when N = 3k + 2, player A starts by saying “1”, while
in the case when N = 3(k + 1), he starts by “1, 2”. After player A’s first turn, we have
the situation analogous to that player B is to start a game with N = 3k + 1, playing the
role of player A (to start first in the remaining game). From the preceding claim, player
A (playing the role of player B in the remaining game) will win the game.

Now we see that, for every positive integer N , there is always a player that can win the
counting game and hence the game is determined. 2

3. We sometimes would use a diagram like the following to distribute n gifts (or assign n
tasks) to n people. The main part of the diagram covered, each person (without seeing
the horizontal line segments) is asked to choose one of the vertical lines. After everyone
has made a choice, the whole diagram is revealed. Following the line chosen by pi, go
down along the line and, whenever hitting an intersection, must make a turn (to the left
or right). The traced path will eventually reach a gift at the end and the gift is given to
pi.

p3 p2 p1 p5 p4

g1 g2 g3 g4 g5

s s
s s

s s
s s

s s

2



Prove by induction that such a diagram (with arbitrary numbers of vertical and horizontal
line segments) always produces a one-to-one mapping between the people and the gifts
(whose number equals that of the vertical lines).

Solution. The proof is by induction on the number m of horizontal line segments. (Note:
it should have been stated that no two horizontal line segments share an intersection.)

Base case (m = 0): Since there is no horizontal line segment, p1 is mapped to g1, p2 to
g2, . . ., and pn to gn, which is a one-to-one mapping between the people and the gifts.

Inductive step: Given an arbitrary setting of m (≥ 1) horizontal line segments, we remove
the line segment that is highest in position; if there are several such line segments, remove
any one of them. From the induction hypothesis, the new setting of m− 1 horizontal line
segments defines a one-to-one mapping between the people and the gifts. Let us refer to
the mapping as f , which maps pi to gf(i) Suppose the removed line segment originally
connected vertical lines i and i+1. We claim that, with the removed line segment restored,
the original setting also defines a one-to-one mapping; call it f ′. Clearly, f ′(i) = f(i + 1),
f ′(i + 1) = f(i), and f ′(j) = f(j) for any other j. It follows that, given f is one-to-one,
f ′ is also one-to-one. 2

4. For each of the following pairs of functions, determine whether f(n) = O(g(n)) and/or
f(n) = Ω(g(n)). Justify your answers.

f(n) g(n)
(a) (log n)log n n

log n

(b) n32n 3n

Solution.

(a) We assume the base of logarithm is 2. f(n) = (log n)log n = (2log log n)log n = 2log log n×log n;
g(n) = n

log n = 2log n
log n = 2log n−log log n.

Therefore, f(n) ≥ g(n) and hence f(n) = Ω(g(n)).

(b) limn→∞
f(n)
g(n) = limn→∞

n32n

3n = limn→∞ n3(2
3)n = 0. So, f(n) = o(g(n)). It follows

that f(n) = O(g(n)) (and g(n) = Ω(f(n))), but f(n) 6= Ω(g(n)).

Alternatively, ∀n ≥ 7, f(n) = n32n ≤ 73 × 3n = 343 × g(n), which shows that f(n) =
O(g(n)). The number 7 was decided by considering the largest number n such that
(n+1

n )3 ≥ 3
2 , after which point the increase via n3 can never catch up with the increase

via (3
2)n. 2

5. Solve the following recurrence relation using generating functions. This is a very simple
recurrence relation, but you must use generating functions in your solution.

T (1) = 1
T (2) = 2
T (n) = 2T (n− 1)− T (n− 2), n ≥ 3

Solution. Let T (z) = 0 + T1z + T2z
2 + T3z

3 + · · ·+ Tnzn + · · · (a generating function for
the sequence T (n), n ≥ 0, assuming T (0) = 0).

3



T (z) = T1z + T2z
2 + T3z

3 + · · ·+ Tnzn + Tn+1z
n+1 + · · ·

2zT (z) = 2T1z
2 + 2T2z

3 + · · ·+ 2Tn−1z
n + 2Tnzn+1 + · · ·

z2T (z) = T1z
3 + T2z

4 + · · ·+ Tn−2z
n + Tn−1z

n+1 + · · ·
(1− 2z + z2)T (z) = z

T (z) = z
1−2z+z2 = z

(1−z)2
= z + 2z2 + 3z3 + · · · + nzn + · · · and, therefore, T (n) = n for

n ≥ 1.

2

6. If f(x) is monotonically decreasing, then

n∑
i=1

f(i) ≤ f(1) +
∫ n

1
f(x)dx.

Show that this is indeed the case. (5 points)

Solution. This is easily seen by comparing the areas (on the R×R plane) defined by the
formulae on the two sides. 2

7. Consider the Knapsack Problem: Given a set S of n items, where the i-th item has an
integer size S[i], and an integer K, find a subset of the items whose sizes sum to exactly
K or determine that no such subset exists.

We have discussed in class two approaches to implementing a solution that we designed
by induction: one uses dynamic programming (see the Appendix), while the other uses
recursive function calls.

Suppose there are 5 items, with sizes 2, 3, 4, 5, 6, and we are looking for a subset whose
sizes sum to 13. Assuming recursive function calls are used, please give the two-dimension
table P whose entries are filled with -, O, I, or left blank when the algorithm terminates.
Which entries of P [n, K] are visited/computed more than once?

Solution.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
- - - - - - - - - - - -

k1 = 2 O - - - - - - - - - -
k2 = 3 I - - - - -
k3 = 4 I - -
k4 = 5 O -
k5 = 6 I

P [0, 1], P [0, 3..8], and P [1, 4] are visited more than once. 2

8. Consider a variant of the Knapsack Problem where we want the subset to be as large as
possible (i.e., to be with as many items as possible). How will you adapt the algorithm
(see the Appendix) that we have studied in class? Your algorithm should collect at the
end the items in one of the best solutions if they exist. Please present your algorithm in
an adequate pseudo code and make assumptions wherever necessary (you may reuse the

4



code for the original Knapsack Problem). Give an analysis of its time complexity. The
more efficient your algorithm is, the more points you will get for this problem.

Solution. (Yi-Wen Chang)

To find the largest possible subset of items, we modify the Knapsack algorithm in the
Appendix to obtain Knapsack ForMaxSubset , as shown below. Each element P [i, k] in
the result array P now contains a new integer variable size which memorizes the size of
the current largest subset for k.

Algorithm Knapsack ForMaxSubset(S, K);
begin

P [0, 0].exist := true;
P [0, 0].size := 0;
for k := 1 to K do

P [0, k].exist := false;
P [0, k].size := 0;

for i := 1 to n do
for k := 0 to K do

P [i, k].exist := false;
P [i, k].size := 0;
if k − S[i] ≥ 0 and P [i− 1, k − S[i]].exist then

if P [i− 1, k].exist and P [i− 1, k].size ≥ P [i− 1, k − S[i]].size + 1 then
P [i, k].exist := true;
P [i, k].belong := false;
P [i, k].size := P [i− 1, k].size;

else
P [i, k].exist := true;
P [i, k].belong := true
P [i, k].size := P [i− 1, k − S[i]].size + 1;

else if P [i− 1, k].exist then
P [i, k].exist := true;
P [i, k].belong := false;
P [i, k].size := P [i− 1, k].size;

if ¬P [n, K].exist then
print “no solution”

else i := n;
k := K;
while k > 0 do

if P [i, k].belong then
print i;
k := k − S[i];

i := i− 1;
end

The complexity remains the same, which is O(nK). When a solution (a subset of items
whose sizes sum to exactly K) exists, the printed result will be the largest among such
subsets. 2

9. Let x1, x2, . . ., xn be a set of integers, and let S =
∑n

i=1 xi. Design an algorithm to
partition the set into two subsets of equal sum, or determine that it is impossible to do

5



so. When the partitioning is possible, your algorithm should also give the two subsets of
integers. The algorithm should run in time O(nS).

Solution. (Jen-Feng Shih)

Algorithm Partition into Two Subsets(x);
begin

sum :=
∑n

i=1 xi;
if sum is odd then print “no solution.”
else

K := sum/2;
Knapsack(x, K);
if P [n, K].exist := false then

print “no solution.”
else

l := 1;
m := 1;
for i := n to 1 do

if P [i, k].belong := true then
set1[l] := x[i];
l := l + 1;
k := k − x[i];

else
set2[m] := x[i];
m := m + 1;

print “set1:”
for i := 1 to l − 1 do

print set1[i];
print “set2:”
for i := 1 to m− 1 do

print set2[i];
end

The complexity remains the same as in the Knapsack Problem, which is O(nK) = O(nS).

2

10. In the towers of Hanoi puzzle, there are three pegs A, B, and C, with n (generalizing the
original eight) disks of different sizes stacked in decreasing order on peg A. The objective
is to transfer all the disks on peg A to peg B, moving one disk at a time (from one peg
to one of the other two) and never having a larger disk stacked upon a smaller one.

(a) Give an algorithm to solve the puzzle. Compute the total number of moves in the
algorithm. (10 points)

Solution.

Algorithm Towers_Hanoi(A,B,C,n);
begin

if n=1 then
pop x from A and push x to B

else

6



Towers_Hanoi(A,C,B,n-1);
pop x from A and push x to B;
Towers_Hanoi(C,B,A,n-1);

end;

Let T (n) denote the number of moves taken by the algorithm to move the n disks
from peg A to peg B. The recurrence relation for T (n) is as follows:

T (1) = 1
T (n) = 2T (n− 1) + 1, for n ≥ 2

T (n) = 2T (n− 1) + 1
2T (n− 1) = 2(2T (n− 2) + 1) = 22T (n− 2) + 2

22T (n− 2) = 22(2T (n− 3) + 1) = 23T (n− 3) + 22

· · · · · ·
2n−2T (2) = 2n−1T (1) + 2n−2

2n−1T (1) = 2n−1

T (n) = 1 + 2 + 22 + · · ·+ 2n−1

= 2n − 1

2

(b) If there is an additional fourth peg D, it is possible to reduce the number of moves.
Please give a new algorithm that requires fewer moves. (5 points)

Solution.

Algorithm Four_Towers_Hanoi(A,B,C,D,n);
begin

if n<=2 then
Towers_Hanoi(A,B,C,n);

else
Four_Towers_Hanoi(A,D,B,C,n-2);
Towers_Hanoi(A,B,C,2);
Four_Towers_Hanoi(D,B,C,A,n-2);

end;

Towers Hanoi(A,B,C,1) takes 1 move, while Towers Hanoi(A,B,C,2) takes 3 moves.
A recurrence relation for T (n) is the following:

T (1) = 1
T (2) = 3
T (n) = 2T (n− 2) + 3, for n ≥ 3

We solve the recurrence relation by considering odd and even n’s separately.
When n (≥ 3) is odd,

T (n) = 2T (n− 2) + 3
2T (n− 2) = 2(2T (n− 4) + 3) = 22T (n− 4) + 2× 3

22T (n− 4) = 22(2T (n− 6) + 3) = 23T (n− 6) + 22 × 3
· · · · · ·

2
n−3

2 T (3) = 2
n−3

2 (2T (1) + 3) = 2
n−1

2 + 2
n−3

2 × 3
T (n) = 2

n−1
2 + 3× (2

n−1
2 − 1)

= 2
n+3

2 − 3

7



When n (≥ 3) is even,

T (n) = 2T (n− 2) + 3
2T (n− 2) = 2(2T (n− 4) + 3) = 22T (n− 4) + 2× 3

22T (n− 4) = 22(2T (n− 6) + 3) = 23T (n− 6) + 22 × 3
· · · · · ·

2
n−4

2 T (4) = 2
n−4

2 (2T (2) + 3) = 3× 2
n−2

2 + 2
n−4

2 × 3
T (n) = 3× 2

n−2
2 + 3× (2

n−2
2 − 1)

= 3× 2
n
2 − 3

Apparently in both cases, the number of moves is less than that in the algorithm for
the original puzzle.

2

8


