

Analysis of Algorithms (Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

Analysis of Algorithms

Algorithms 2012 1 / 23

3

イロト イポト イヨト イヨト

Introduction

The purpose of algorithm analysis is to predict the behavior (running time, space requirement, etc.) of an algorithm without implementing it on a specific computer. (Why?)

イロト イポト イヨト イヨト

Introduction

- The purpose of algorithm analysis is to predict the behavior (running time, space requirement, etc.) of an algorithm without implementing it on a specific computer. (Why?)
- As the exact behavior of an algorithm is hard to predict, the analysis is usually an *approximation*:
 - Relative to the input size (usually denoted by n): input possibilities too enormous to elaborate
 - Asymptotic: should care more about larger inputs
 - Worst-Case: easier to do, often representative (Why not average-case?)
- Such an approximation is usually good enough for comparing different algorithms for the same problem.

Yih-Kuen Tsay (IM.NTU)

Analysis of Algorithms

Algorithms 2012 2 / 23

Complexity

- Theoretically, "complexity of an algorithm" is a more precise term for "approximate behavior of an algorithm".
- Two most important measures of complexity:

🌻 Time Complexity

an upper bound on the number of steps that the algorithm performs.

Space Complexity

an upper bound on the amount of temporary storage required for running the algorithm (excluding the input, the output, and the program itself).

😚 We will focus on time complexity.

Yih-Kuen Tsay (IM.NTU)

Analysis of Algorithms

Algorithms 2012 3 / 23

Comparing Running Times

How do we compare the following running times?

- 1. 100*n*
- 2. $2n^2 + 50$
- **3**. 100*n*^{1.8}

イロト 不得 トイヨト イヨト 二日

Comparing Running Times

How do we compare the following running times?

- **1**. 100*n*
- 2. $2n^2 + 50$
- **3**. 100*n*^{1.8}
- We will study an approach (the O notation) that allows us to ignore constant factors and concentrate on the behavior as n goes to infinity.
- For most algorithms, the constants in the expressions of their running times tend to be small.

The *O* Notation

- A function g(n) is O(f(n)) for another function f(n) if there exist constants c and N such that, for all $n \ge N$, $g(n) \le cf(n)$.
- The function g(n) may be substantially less than cf(n); the O notation bounds it only from above.
- The O notation allows us to ignore constants conveniently.

The **O** Notation

- A function g(n) is O(f(n)) for another function f(n) if there exist constants *c* and *N* such that, for all *n* ≥ *N*, g(n) ≤ cf(n).
- The function g(n) may be substantially less than cf(n); the O notation bounds it only from above.
- The O notation allows us to ignore constants conveniently.
- Section Examples:

$$5n^2 + 15 = O(n^2).$$

(cf. $5n^2 + 15 \le O(n^2)$ or $5n^2 + 15 \in O(n^2)$)
 $5n^2 + 15 = O(n^3).$
(cf. $5n^2 + 15 \le O(n^3)$ or $5n^2 + 15 \in O(n^3)$)
In an expression, $T(n) = 3n^2 + O(n).$

Yih-Kuen Tsay (IM.NTU)

Algorithms 2012 5 / 23

The *O* Notation (cont.)

No need to specify the base of a logarithm.
 \$\$ log₂ n = \frac{log_{10} n}{log_{10} 2} = \frac{1}{log_{10} 2} log_{10} n.\$\$
 \$\$ For example, we can just write O(log n).\$\$
 \$\$ O(1) denotes a constant.\$\$\$

Properties of *O*

• We can add and multiply with O.

Lemma (3.2)

1. If
$$f(n) = O(s(n))$$
 and $g(n) = O(r(n))$, then
 $f(n) + g(n) = O(s(n) + r(n))$.
2. If $f(n) = O(s(n))$ and $g(n) = O(r(n))$, then
 $f(n) \cdot g(n) = O(s(n) \cdot r(n))$.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Properties of *O*

• We can add and multiply with O.

Lemma (3.2)

1. If
$$f(n) = O(s(n))$$
 and $g(n) = O(r(n))$, then
 $f(n) + g(n) = O(s(n) + r(n))$.
2. If $f(n) = O(s(n))$ and $g(n) = O(r(n))$, then
 $f(n) \cdot g(n) = O(s(n) \cdot r(n))$.

However, we cannot subtract or divide with O. (Why?)

Properties of *O*

• We can add and multiply with O.

Lemma (3.2)

1. If
$$f(n) = O(s(n))$$
 and $g(n) = O(r(n))$, then
 $f(n) + g(n) = O(s(n) + r(n))$.
2. If $f(n) = O(s(n))$ and $g(n) = O(r(n))$, then
 $f(n) \cdot g(n) = O(s(n) \cdot r(n))$.

However, we cannot subtract or divide with O. (Why?)

$$2n = O(n), n = O(n), \text{ and } 2n - n = n \neq O(n - n).$$
 $n^2 = O(n^2), n = O(n^2), \text{ and } n^2/n = n \neq O(n^2/n^2).$

Yih-Kuen Tsay (IM.NTU)

Algorithms 2012 7 / 23

Polynomial vs. Exponential

- A function f(n) is monotonically growing if $n_1 ≥ n_2$ implies that $f(n_1) ≥ f(n_2)$.
- An exponential function grows at least as fast as a polynomial function does.

Theorem (3.1)

For all constants c > 0 and a > 1, and for all monotonically growing functions f(n), $(f(n))^c = O(a^{f(n)})$.

Polynomial vs. Exponential

- A function f(n) is monotonically growing if $n_1 \ge n_2$ implies that $f(n_1) \ge f(n_2)$.
- An exponential function grows at least as fast as a polynomial function does.

Theorem (3.1)

For all constants c > 0 and a > 1, and for all monotonically growing functions f(n), $(f(n))^c = O(a^{f(n)})$.

Examples:

Take n as f(n), $n^c = O(a^n)$.
Take log_a n as f(n), $(\log_a n)^c = O(a^{\log_a n}) = O(n)$.

Yih-Kuen Tsay (IM.NTU)

Analysis of Algorithms

Algorithms 2012 8 / 23

Speed of Growth

$\log n$	n	$n\log n$	n^2	n^3	2^{n}
0	1	0	1	1	2
1	2	2	4	8	4
2	4	8	16	64	16
3	8	24	64	512	256
4	16	64	256	4,096	$65,\!536$
5	32	160	1,024	32,768	4,294,967,296

Table 1.7 Function values

Source: [E. Horowitz et al. 1998].

Yih-Kuen Tsay (IM.NTU)

Analysis of Algorithms

Algorithms 2012 9 / 23

Speed of Growth (cont.)

running times	<i>time</i> 1 1000 steps/sec	<i>time</i> 2 2000 steps/sec	<i>time</i> 3 4000 steps/sec	<i>time</i> 4 8000 steps/sec
$\log_2 n$	0.010	0.005	0.003	0.001
n	1	0.5	0.25	0.125
$n \log_2 n$	10	5	2.5	1.25
n ^{1.5}	32	16	8	4
n^2	1,000	500	250	125
n^3	1,000,000	500,000	250,000	125,000
1.1"	10 ³⁹	10 ³⁹	10 ³⁸	10 ³⁸

Table 3.1 Running times (int seconds) under different assumptions (n = 1000)

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU)

Analysis of Algorithms

Algorithms 2012 10 / 23

= 900

O, o, Ω , and Θ

- Let T(n) be the number of steps required to solve a given problem for input size n.
- We say that $T(n) = \Omega(g(n))$ or the problem has a lower bound of $\Omega(g(n))$ if there exist constants c and N such that, for all $n \ge N$, $T(n) \ge cg(n)$.
- If a certain function f(n) satisfies both f(n) = O(g(n)) and $f(n) = \Omega(g(n))$, then we say that $f(n) = \Theta(g(n))$.

O, o, Ω , and Θ

- Let T(n) be the number of steps required to solve a given problem for input size n.
- We say that $T(n) = \Omega(g(n))$ or the problem has a lower bound of $\Omega(g(n))$ if there exist constants c and N such that, for all $n \ge N$, $T(n) \ge cg(n)$.
- If a certain function f(n) satisfies both f(n) = O(g(n)) and $f(n) = \Omega(g(n))$, then we say that $f(n) = \Theta(g(n))$.
- We say that f(n) = o(g(n)) if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$.

Yih-Kuen Tsay (IM.NTU)

Analysis of Algorithms

Algorithms 2012 11 / 23

Polynomial vs. Exponential (cont.)

An exponential function grows *faster* than a polynomial function does.

Theorem (3.3)

For all constants c > 0 and a > 1, and for all monotonically growing functions f(n), we have

$$(f(n))^c = o(a^{f(n)}).$$

Consider a previous example again:
 Take log_a n as f(n). For all c > 0 and a > 1,

$$(\log_a n)^c = o(a^{\log_a n}) = o(n).$$

Sums

- Techniques for summing expressions are essential for complexity analysis.
- 😚 For example, given that we know

$$S_0(n) = \sum_{i=1}^n 1 = n$$

and

$$S_1(n) = \sum_{i=1}^n i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2},$$

we want to compute the sum

$$S_2(n) = \sum_{i=1}^n i^2 = 1^2 + 2^2 + 3^2 + \cdots + n^2.$$

Yih-Kuen Tsay (IM.NTU)

Analysis of Algorithms

Algorithms 2012 13 / 23

(日) (同) (三) (三)

Sums (cont.)

From

$$(i+1)^3 = i^3 + 3i^2 + 3i + 1,$$

we have

$$(i+1)^3 - i^3 = 3i^2 + 3i + 1.$$

- 2

イロト イヨト イヨト イヨト

Sums (cont.)

😚 So, we have

$$(n+1)^3 - 1 = 3 \times S_2(n) + 3 \times S_1(n) + S_0(n).$$

- Given S₀(n) and S₁(n), the sum S₂(n) can be computed by straightforward algebra.
- Recall that the left-hand side $(n + 1)^3 1$ equals $(S_3(n+1) S_3(1)) S_3(n)$, a result from "shifting and canceling" terms of two sums.

Sums (cont.)

😚 So, we have

$$(n+1)^3 - 1 = 3 \times S_2(n) + 3 \times S_1(n) + S_0(n).$$

- Given $S_0(n)$ and $S_1(n)$, the sum $S_2(n)$ can be computed by straightforward algebra.
- Recall that the left-hand side $(n + 1)^3 1$ equals
 $(S_3(n + 1) S_3(1)) S_3(n)$, a result from "shifting and canceling" terms of two sums.
- This generalizes to $S_k(n)$, for k > 2.
- Similar shifting and canceling techniques apply to other kinds of sums.

Recurrence Relations

- A recurrence relation is a way to define a function by an expression involving the same function.
- 😚 The Fibonacci numbers can be defined as follows:

$$\begin{cases}
F(1) = 1 \\
F(2) = 1 \\
F(n) = F(n-2) + F(n-1)
\end{cases}$$

We would need k - 2 steps to compute F(k).

(日) (同) (三) (三)

Recurrence Relations

- A recurrence relation is a way to define a function by an expression involving the same function.
- 😚 The Fibonacci numbers can be defined as follows:

$$\begin{cases}
F(1) = 1 \\
F(2) = 1 \\
F(n) = F(n-2) + F(n-1)
\end{cases}$$

We would need k - 2 steps to compute F(k).

- It is more convenient to have an explicit (or closed-form) expression.
- To obtain the explicit expression is called *solving* the recurrence relation.

Yih-Kuen Tsay (IM.NTU)

Analysis of Algorithms

Algorithms 2012 16 / 23

Guessing and Proving an Upper Bound

• Recurrence relation: $\begin{cases} T(2) = 1 \\ T(2n) \le 2T(n) + 2n - 1 \end{cases}$ • Guess: $T(n) = O(n \log n)$.

Yih-Kuen Tsay (IM.NTU)

Analysis of Algorithms

Algorithms 2012 17 / 23

Guessing and Proving an Upper Bound

Recurrence relation:
$$\begin{cases}
T(2) = 1 \\
T(2n) \leq 2T(n) + 2n - 1
\end{cases}$$
Guess:
$$T(n) = O(n \log n).$$
Proof:
$$1. \text{ Base case: } T(2) \leq 2 \log 2.$$

$$2. \text{ Inductive step: } T(2n) \leq 2T(n) + 2n - 1$$

$$\leq 2(n \log n) + 2n - 1$$

$$\leq 2n \log n + 2n \log 2 - 1$$

$$\leq 2n (\log n + \log 2)$$

$$= 2n \log 2n$$

Yih-Kuen Tsay (IM.NTU)

Analysis of Algorithms

Algorithms 2012 17 / 23

3

(日) (周) (日) (日)

Recurrent Relations with Full History

Section 2017 Example:

$$T(n) = c + \sum_{i=1}^{n-1} T(i),$$

where c is a constant and T(1) is given separately.

 T(n)−T(n−1) = (c+ $\sum_{i=1}^{n-1} T(i)$)−(c+ $\sum_{i=1}^{n-2} T(i)$) = T(n−1); hence, T(n) = 2T(n−1). (This holds only for n ≥ 3.)

😚 So, we get

$$\begin{cases} T(2) = c + T(1) \\ T(n) = 2T(n-1) & \text{if } n \ge 3 \end{cases}$$

which is easier to solve.

Other examples as a reading assignment ...

Yih-Kuen Tsay (IM.NTU)

Analysis of Algorithms

Algorithms 2012 18 / 23

The running time T(n) of a divide-and-conquer algorithm satisfies

$$T(n) = aT(n/b) + cn^k$$

where

- *a* is the number of subproblems,
- interm n/b is the size of each subproblem, and
- *cn^k* is the running time of the solutions-combining algorithm.

(日) (同) (三) (三)

Divide and Conquer Relations (cont.)

Assume, for simplicity, $n = b^m$ ($\frac{n}{b^m} = 1$, $\frac{n}{b^{m-1}} = b$, etc.).

$$T(n) = aT(\frac{n}{b}) + cn^{k}$$

= $a(aT(\frac{n}{b^{2}}) + c(\frac{n}{b})^{k}) + cn^{k}$
= $a(a(aT(\frac{n}{b^{3}}) + c(\frac{n}{b^{2}})^{k}) + c(\frac{n}{b})^{k}) + cn^{k}$
...
= $a(a(\cdots(aT(\frac{n}{b^{m}}) + c(\frac{n}{b^{m-1}})^{k}) + \cdots) + c(\frac{n}{b})^{k}) + cn^{k}$

Assuming T(1) = c,

$$T(n) = c \sum_{i=0}^{m} a^{m-i} b^{ik} = c a^m \sum_{i=0}^{m} (\frac{b^k}{a})^i.$$

Three cases: $\frac{b^k}{a} < 1$, $\frac{b^k}{a} = 1$, and $\frac{b^k}{a} > 1$.

Yih-Kuen Tsay (IM.NTU)

Analysis of Algorithms

Algorithms 2012 20 / 23

Divide and Conquer Relations (cont.)

Theorem (3.4)

The solution of the recurrence relation $T(n) = aT(n/b) + cn^k$, where a and b are integer constants, $a \ge 1$, $b \ge 2$, and c and k are positive constants, is

$$T(n) = \begin{cases} O(n^{\log_b a}) & \text{if } a > b^k \\ O(n^k \log n) & \text{if } a = b^k \\ O(n^k) & \text{if } a < b^k \end{cases}$$

Yih-Kuen Tsay (IM.NTU)

Analysis of Algorithms

Algorithms 2012 21 / 23

イロト イポト イヨト イヨト 二日

Useful Facts

📀 Harmonic series

$$H_n = \sum_{k=1}^n \frac{1}{k} = \ln n + \gamma + O(1/n),$$

where $\gamma = 0.577...$ is Euler's constant.

😚 Sum of logarithms

$$\sum_{i=1}^{n} \lfloor \log_2 i \rfloor = (n+1) \lfloor \log_2 n \rfloor - 2^{\lfloor \log_2 n \rfloor + 1} + 2$$
$$= \Theta(n \log n).$$

Yih-Kuen Tsay (IM.NTU)

Analysis of Algorithms

Algorithms 2012 22 / 23

- 34

イロト イポト イヨト イヨト

Useful Facts (cont.)

Bounding a summation by an integral:
 If f(x) is monotonically *increasing*, then

$$\sum_{i=1}^n f(i) \leq \int_1^{n+1} f(x) dx.$$

If f(x) is monotonically *decreasing*, then

$$\sum_{i=1}^n f(i) \leq f(1) + \int_1^n f(x) dx.$$

Stirling's approximation

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n (1 + O(1/n)).$$

Yih-Kuen Tsay (IM.NTU)

Analysis of Algorithms

Algorithms 2012 23 / 23