# Algorithms 2012: Analysis of Algorithms

(Based on [Manber 1989])

#### Yih-Kuen Tsay

# 1 Introduction

#### Introduction

- The purpose of algorithm analysis is to predict the behavior (running time, space requirement, etc.) of an algorithm *without implementing it* on a specific computer. (Why?)
- As the exact behavior of an algorithm is hard to predict, the analysis is usually an *approximation*:
  - Relative to the input size (usually denoted by n): input possibilities too enormous to elaborate
  - Asymptotic: should care more about larger inputs
  - Worst-Case: easier to do, often representative (Why not average-case?)
- Such an approximation is usually good enough for comparing different algorithms for the same problem.

#### Complexity

- Theoretically, "complexity of an algorithm" is a more precise term for "approximate behavior of an algorithm".
- Two most important measures of complexity:
  - Time Complexity an upper bound on the number of steps that the algorithm performs.
  - Space Complexity an upper bound on the amount of temporary storage required for running the algorithm (excluding the input, the output, and the program itself).
- We will focus on time complexity.

#### **Comparing Running Times**

- How do we compare the following running times?
  - 1.~100n
  - 2.  $2n^2 + 50$
  - 3.  $100n^{1.8}$
- We will study an approach (the *O* notation) that allows us to ignore constant factors and concentrate on the behavior as *n* goes to infinity.
- For most algorithms, the constants in the expressions of their running times tend to be small.

## 2 The O Notation

#### The O Notation

- A function g(n) is O(f(n)) for another function f(n) if there exist constants c and N such that, for all  $n \ge N$ ,  $g(n) \le cf(n)$ .
- The function g(n) may be substantially less than cf(n); the O notation bounds it only from above.
- The O notation allows us to ignore constants conveniently.
- Examples:
  - $-5n^2 + 15 = O(n^2)$ . (cf.  $5n^2 + 15 \le O(n^2)$  or  $5n^2 + 15 \in O(n^2)$ )
  - $-5n^2 + 15 = O(n^3)$ . (cf.  $5n^2 + 15 \le O(n^3)$  or  $5n^2 + 15 \in O(n^3)$ )
  - In an expression,  $T(n) = 3n^2 + O(n)$ .

#### The *O* Notation (cont.)

• No need to specify the base of a logarithm.

$$-\log_2 n = \frac{\log_{10} n}{\log_{10} 2} = \frac{1}{\log_{10} 2} \log_{10} n$$

- For example, we can just write  $O(\log n)$ .
- O(1) denotes a constant.

#### **Properties of** *O*

• We can add and multiply with O.

**Lemma 1** (3.2). 1. If f(n) = O(s(n)) and g(n) = O(r(n)), then f(n) + g(n) = O(s(n) + r(n)). 2. If f(n) = O(s(n)) and g(n) = O(r(n)), then  $f(n) \cdot g(n) = O(s(n) \cdot r(n))$ .

- However, we cannot subtract or divide with O.
  - $-2n = O(n), n = O(n), \text{ and } 2n n = n \neq O(n n).$ -  $n^2 = O(n^2), n = O(n^2), \text{ and } n^2/n = n \neq O(n^2/n^2).$

### 3 Speed of Growth

#### Polynomial vs. Exponential

- A function f(n) is monotonically growing if  $n_1 \ge n_2$  implies that  $f(n_1) \ge f(n_2)$ .
- An exponential function grows at least as fast as a polynomial function does.

**Theorem 2** (3.1). For all constants c > 0 and a > 1, and for all monotonically growing functions  $f(n), (f(n))^c = O(a^{f(n)}).$ 

- Examples:
  - Take n as f(n),  $n^c = O(a^n)$ .
  - Take  $\log_a n$  as f(n),  $(\log_a n)^c = O(a^{\log_a n}) = O(n)$ .

#### Speed of Growth

| $\log n$ | n  | $n \log n$ | $n^2$ | $n^3$  | $2^{n}$       |
|----------|----|------------|-------|--------|---------------|
| 0        | 1  | 0          | 1     | 1      | 2             |
| 1        | 2  | 2          | 4     | 8      | 4             |
| 2        | 4  | 8          | 16    | 64     | 16            |
| 3        | 8  | 24         | 64    | 512    | 256           |
| 4        | 16 | 64         | 256   | 4,096  | 65,536        |
| 5        | 32 | 160        | 1,024 | 32,768 | 4,294,967,296 |

Table 1.7 Function values

Source: [E. Horowitz et al. 1998].

#### Speed of Growth (cont.)

| running times    | <i>time</i> 1<br>1000 steps/sec | <i>time</i> 2<br>2000 steps/sec | <i>time</i> 3 4000 steps/sec | <i>time</i> 4<br>8000 steps/sec |  |
|------------------|---------------------------------|---------------------------------|------------------------------|---------------------------------|--|
| $\log_2 n$       | 0.010                           | 0.005                           | 0.003                        | 0.001                           |  |
| n                | 1                               | 0.5                             | 0.25                         | 0.125                           |  |
| $n \log_2 n$     | 10                              | 5                               | 2.5                          | 1.25                            |  |
| n <sup>1.5</sup> | 32                              | 16                              | 8                            | 4                               |  |
| $n^2$            | 1,000                           | 500                             | 250                          | 125                             |  |
| $n^3$            | 3 1,000,000                     |                                 | 250,000                      | 125,000                         |  |
| 1.1              | 10 <sup>39</sup>                | 10 <sup>39</sup>                | 10 38                        | 1038                            |  |

Table 3.1 Running times (int seconds) under different assumptions (n = 1000)

Source: [Manber 1989].

#### $O, o, \Omega, \text{ and } \Theta$

- Let T(n) be the number of steps required to solve a given problem for input size n.
- We say that  $T(n) = \Omega(g(n))$  or the problem has a lower bound of  $\Omega(g(n))$  if there exist constants c and N such that, for all  $n \ge N$ ,  $T(n) \ge cg(n)$ .
- If a certain function f(n) satisfies both f(n) = O(g(n)) and  $f(n) = \Omega(g(n))$ , then we say that  $f(n) = \Theta(g(n))$ .
- We say that f(n) = o(g(n)) if  $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$ .

#### Polynomial vs. Exponential (cont.)

• An exponential function grows *faster* than a polynomial function does.

**Theorem 3** (3.3). For all constants c > 0 and a > 1, and for all monotonically growing functions f(n), we have

$$(f(n))^c = o(a^{f(n)}).$$

• Consider a previous example again: Take  $\log_a n$  as f(n). For all c > 0 and a > 1,

$$(\log_a n)^c = o(a^{\log_a n}) = o(n).$$

### 4 Sums

Sums

- Techniques for summing expressions are essential for complexity analysis.
- For example, given that we know

$$S_0(n) = \sum_{i=1}^n 1 = n$$

and

$$S_1(n) = \sum_{i=1}^n i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2},$$

we want to compute the sum

$$S_2(n) = \sum_{i=1}^n i^2 = 1^2 + 2^2 + 3^2 + \dots + n^2.$$

Sums (cont.)

From

we have

$$(i+1)^{3} = i^{3} + 3i^{2} + 3i + 1,$$

$$(i+1)^{3} - i^{3} = 3i^{2} + 3i + 1.$$

$$2^{3} - 1^{3} = 3 \times 1^{2} + 3 \times 1 + 1$$

$$3^{3} - 2^{3} = 3 \times 2^{2} + 3 \times 2 + 1$$

$$4^{3} - 3^{3} = 3 \times 3^{2} + 3 \times 3 + 1$$

$$\dots \dots$$

$$(n+1)^{3} - n^{3} = 3 \times n^{2} + 3 \times n + 1$$

$$(n+1)^{3} - 1 = 3 \times S_{2}(n) + 3 \times S_{1}(n) + S_{0}(n)$$

$$(S_{3}(n+1) - S_{3}(1)) - S_{3}(n) = 3 \times S_{2}(n) + 3 \times S_{1}(n) + S_{0}(n)$$

#### Sums (cont.)

• So, we have

$$(n+1)^3 - 1 = 3 \times S_2(n) + 3 \times S_1(n) + S_0(n).$$

- Given  $S_0(n)$  and  $S_1(n)$ , the sum  $S_2(n)$  can be computed by straightforward algebra.
- Recall that the left-hand side  $(n+1)^3 1$  equals  $(S_3(n+1) S_3(1)) S_3(n)$ , a result from "shifting and canceling" terms of two sums.
- This generalizes to  $S_k(n)$ , for k > 2.
- Similar shifting and canceling techniques apply to other kinds of sums.

# 5 Recurrence Relations

#### **Recurrence Relations**

- A recurrence relation is a way to define a function by an expression involving the same function.
- The Fibonacci numbers can be defined as follows:

$$\begin{cases} F(1) = 1 \\ F(2) = 1 \\ F(n) = F(n-2) + F(n-1) \end{cases}$$

We would need k-2 steps to compute F(k).

- It is more convenient to have an explicit (or closed-form) expression.
- To obtain the explicit expression is called *solving* the recurrence relation.

#### Guessing and Proving an Upper Bound

- Recurrence relation:  $\left\{ \begin{array}{l} T(2)=1\\ T(2n)\leq 2T(n)+2n-1 \end{array} \right.$
- Guess:  $T(n) = O(n \log n)$ .
- Proof:
  - 1. Base case:  $T(2) \le 2 \log 2$ .
  - 2. Inductive step:  $T(2n) \leq 2T(n) + 2n 1$

 $\leq 2(n\log n) + 2n - 1$  $= 2n\log n + 2n\log 2 - 1$  $\leq 2n(\log n + \log 2)$  $= 2n\log 2n$ 

#### **Recurrent Relations with Full History**

• Example:

$$T(n) = c + \sum_{i=1}^{n-1} T(i),$$

where c is a constant and T(1) is given separately.

- $T(n) T(n-1) = (c + \sum_{i=1}^{n-1} T(i)) (c + \sum_{i=1}^{n-2} T(i)) = T(n-1)$ ; hence, T(n) = 2T(n-1). (This holds only for  $n \ge 3$ .)
- So, we get

$$\begin{cases} T(2) = c + T(1) \\ T(n) = 2T(n-1) & \text{if } n \ge 3 \end{cases}$$

which is easier to solve.

• Other examples as a reading assignment ...

# 6 Divide and Conquer Relations

#### **Divide and Conquer Relations**

• The running time T(n) of a divide-and-conquer algorithm satisfies

$$T(n) = aT(n/b) + cn^k$$

where

- -a is the number of subproblems,
- -n/b is the size of each subproblem, and
- $-cn^k$  is the running time of the solutions-combining algorithm.

#### Divide and Conquer Relations (cont.)

Assume, for simplicity,  $n = b^m \left(\frac{n}{b^m} = 1, \frac{n}{b^{m-1}} = b$ , etc.).

$$\begin{split} T(n) &= aT(\frac{n}{b}) + cn^k \\ &= a(aT(\frac{n}{b^2}) + c(\frac{n}{b})^k) + cn^k \\ &= a(a(aT(\frac{n}{b^3}) + c(\frac{n}{b^2})^k) + c(\frac{n}{b})^k) + cn^k \\ & \cdots \\ &= a(a(\cdots(aT(\frac{n}{b^m}) + c(\frac{n}{b^{m-1}})^k) + \cdots) + c(\frac{n}{b})^k) + cn^k \end{split}$$

Assuming T(1) = c,

$$T(n) = c \sum_{i=0}^{m} a^{m-i} b^{ik} = c a^m \sum_{i=0}^{m} (\frac{b^k}{a})^i.$$

Three cases:  $\frac{b^k}{a} < 1$ ,  $\frac{b^k}{a} = 1$ , and  $\frac{b^k}{a} > 1$ .

### Divide and Conquer Relations (cont.)

**Theorem 4** (3.4). The solution of the recurrence relation  $T(n) = aT(n/b) + cn^k$ , where a and b are integer constants,  $a \ge 1$ ,  $b \ge 2$ , and c and k are positive constants, is

$$T(n) = \begin{cases} O(n^{\log_b a}) & \text{if } a > b^k \\ O(n^k \log n) & \text{if } a = b^k \\ O(n^k) & \text{if } a < b^k \end{cases}$$

### 7 Useful Facts

**Useful Facts** 

• Harmonic series

$$H_n = \sum_{k=1}^n \frac{1}{k} = \ln n + \gamma + O(1/n),$$

where  $\gamma = 0.577...$  is Euler's constant.

• Sum of logarithms

$$\sum_{i=1}^{n} \lfloor \log_2 i \rfloor = (n+1) \lfloor \log_2 n \rfloor - 2^{\lfloor \log_2 n \rfloor + 1} + 2$$
$$= \Theta(n \log n).$$

# Useful Facts (cont.)

• Bounding a summation by an integral: If f(x) is monotonically *increasing*, then

$$\sum_{i=1}^n f(i) \le \int_1^{n+1} f(x) dx.$$

If f(x) is monotonically *decreasing*, then

$$\sum_{i=1}^n f(i) \le f(1) + \int_1^n f(x) dx.$$

• Stirling's approximation

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + O(1/n)\right).$$