Algorithms 2012: String Processing

(Based on [Manber 1989])

Yih-Kuen Tsay

1 Data Compression

Data Compression

Problem 1. Given a text (a sequence of characters), find an encoding for the characters that satisfies the prefix constraint and that minimizes the total number of bits needed to encode the text.

The *prefix constraint* states that the prefixes of an encoding of one character must not be equal to a complete encoding of another character.

Denote the characters by c_1, c_2, \dots, c_n and their frequencies by f_1, f_2, \dots, f_n . Given an encoding E in which a bit string s_i represents c_i , the length (number of bits) of the text encoded by using E is $\sum_{i=1}^n |s_i| \cdot f_i$.

A Code Tree

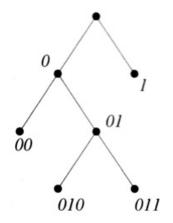


Figure 6.17 The tree representation of encoding.

Source: [Manber 1989].

A Huffman Tree

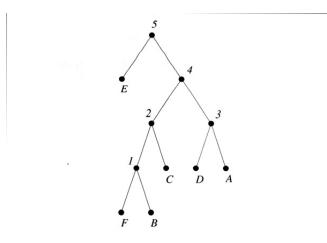


Figure 6.19 The Huffman tree for example 6.1.

Source: [Manber 1989].

Huffman Encoding

```
Algorithm Huffman_Encoding (S, f);
insert all characters into a heap H
according to their frequencies;
```

while H not empty do
if H contains only one character X then
make X the root of T
else
delete X and Y with lowest frequencies;
from H;
create Z with a frequency equal to the
sum of the frequencies of X and Y;
insert Z into H;
make X and Y children of Z in T

2 String Matching

String Matching

Problem 2. Given two strings $A (= a_1 a_2 \cdots a_n)$ and $B (= b_1 b_2 \cdots b_m)$, find the first occurrence (if any) of B in A. In other words, find the smallest k such that, for all $i, 1 \leq i \leq m$, we have $a_{k-1+i} = b_i$.

A substring of a string A is a consecutive sequence of characters $a_i a_{i+1} \cdots a_j$ from A.

Straightforward String Matching

A = xyxxyxyxyxyxyxyxyxyxxx. B = xyxyyxyxyxxx. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 1: $x y x y \cdot \cdot \cdot$ x · · · 2: ху... 3: 4: х у х у у · · · x · · · 5: x y x y y x y x y x x x · · · 6: 7: 8: $x y x \cdot \cdot \cdot$ $x \cdot \cdot \cdot$ 9: $x \cdot \cdot \cdot$ 10: 11: *x y x y y · · ·* 12: $x \cdot \cdot \cdot$ 13: xyxyyxyxyxx

Figure 6.20 An example of a straightforward string matching.

Source: [Manber 1989].

Matching Against Itself

B =	x	у	x	у	у	х	у	x	у	x	x
		x	•	·							
			х	у	х	·	·	·			
				х							
					x	•	·	·			
						x	у	x	у	у	
							x		·	·	
								x	у	x	

Figure 6.21 Matching the pattern against itself.

Source: [Manber 1989].

The Values of next

<i>i</i> =	1	2	3	4	5	6	7	8	9	10	11
<i>B</i> =	x	у	x	у	у	x	у	x	у	x	x
next =	-1	0	0	1	2	0	1	2	3	4	3

Figure 6.22 The values of next.

Source: [Manber 1989].

The KMP Algorithm

Algorithm String_Match (A, n, B, m); begin j := 1; i := 1; Start := 0;while Start = 0 and $i \le n$ do if B[j] = A[i] then j := j + 1; i := i + 1else j := next[j] + 1;if j = 0 then j := 1; i := i + 1;if j = m + 1 then Start := i - mand

 \mathbf{end}

The KMP Algorithm (cont.)

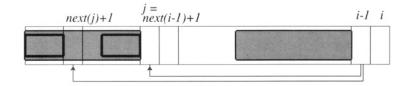


Figure 6.24 Computing next(i).

Source: [Manber 1989].

The KMP Algorithm (cont.)

```
Algorithm Compute_Next (B, m);
begin
next[1] := -1; next[2] := 0;
for i := 3 to m do
j := next[i - 1] + 1;
while b_{i-1} \neq b_j and j > 0 do
j := next[j] + 1;
next[i] := j
```

end

3 String Editing

String Editing

Problem 3. Given two strings $A \ (= a_1 a_2 \cdots a_n)$ and $B \ (= b_1 b_2 \cdots b_m)$, find the minimum number of changes required to change A character by character such that it becomes equal to B.

Three types of changes (or edit steps) allowed: (1) insert, (2) delete, and (3) replace.

String Editing (cont.)

Let C(i, j) denote the minimum cost of changing A(i) to B(j), where $A(i) = a_1 a_2 \cdots a_i$ and $B(j) = b_1 b_2 \cdots b_j$.

$$C(i,j) = \min \begin{cases} C(i-1,j) + 1 & (\text{deleting } a_i) \\ C(i,j-1) + 1 & (\text{inserting } b_j) \\ C(i-1,j-1) + 1 & (a_i \to b_j) \\ C(i-1,j-1) & (a_i = b_j) \end{cases}$$

String Editing (cont.)

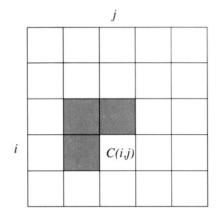


Figure 6.26 The dependencies of C(i, j).

Source: [Manber 1989].

String Editing (cont.)