
Algorithms [Compiled on May 7, 2013] Spring 2013

Suggested Solutions to Midterm Problems

1. Prove by induction that the regions formed by n circles in the plane can be colored with
two colors such that any neighboring regions (which share an arc, not just a point) are
colored differently.

Solution. (Wei-Hsien Chang)

The proof is by induction on the number (n) of circles.

• Base case: n=1, trivial.

• Induction Hypothesis: We assume that for all n, 1 ≤ n < k, the regions formed by n
circles can be colored as required.

• Inductive Step: n = k (k > 1).
We call the graph with k circles G.

Now we randomly remove 1 circle from G to get a graph with the remaining (k − 1)
circles, called G′.

Because G′ has less than k circles, we can color it due to the induction hypothesis.

Now we put the removed circle back and observe that several parts of colored G′ fall
inside the circle.

1



To meet the requirement, we flip the colors of the regions inside the circle.

Both the regions of G′ (and hence of G) outside the circle and the regions of G inside
the circle meet the coloring requirement.
The regions that share an arc on the circle also have different colors, because they
are of the same color in G′, and we have flipped one of the colors.
So, the coloring of all regions in G meets the requirement. This completes the
inductive proof.

2

2. Prove by induction that, for complete binary trees with three nodes or more, one of the
two subtrees under the root is a full binary tree and the other is a complete binary tree.
(Note: full binary trees are special cases of complete binary trees.)

Solution. For a complete binary tree with n nodes, its nodes can be numbered 1 through
n compactly such that the root is numbered 1 and, for a node numbered i (≥ 1), its
left child (if existent) is numbered 2i and its right child (if existent) is numbered 2i + 1.
Conversely, a binary tree whose nodes can be compactly numbered as above must be a
complete binary tree. With this compact numbering, a node can be uniquely identified by
a number, and the parent of a non-root node i (> 1) is identified by b i2c. The last/youngest
parent is the node with the largest number that has a child. Clearly, it is identified by
bn2 c and its immediate right sibling is identified by bn2 c+ 1. When n is even, to obtain a
complete binary tree with n + 1 nodes, the new leaf (numbered n + 1) should be added
as the right child of the youngest parent, namely node bn2 c, and when n is odd, it should
be added as the left child of node bn2 c+ 1. Let us refer to this node where the next new
leaf should be added as the prospective parent.

The height (or depth) of a complete binary tree is the number of levels (or parent-child
edges) one needs to go through from the root to the last node. The number of nodes of a
full binary can be calculated as 2h+1 − 1, where h is the height of the tree. We say that
a complete binary tree is proper if it is not a full binary tree. To facilitate the inductive
proof, we refine/strengthen the proposition in the problem statement as follows:

For a complete binary tree with n (≥ 3) nodes, the two subtrees of the root
satisfy exactly one of the following conditions:

(a) The left subtree is a proper complete binary tree and is one-level taller than
the right subtree, which is a full binary tree. In this case, the prospective
parent is in the left subtree and it is also the prospective parent of the
subtree.

(b) The left subtree is a full binary tree and is as tall as as the right subtree,
which is a proper complete binary tree. In this case, the prospective parent
is in the right subtree and it is also the prospective parent of the subtree.

(c) The two subtrees are both full binary trees of the same height. In this case,
the prospective parent is in the left subtree and it is also the prospective
parent of the subtree.

2



(d) The two subtrees are both full binary trees and the left subtree is one-level
taller than the right subtree. In this case, the prospective parent is in the
right subtree and it is also the prospective parent of the subtree.

Now, a proof by induction on the number of nodes should be easier to construct and is
left as an exercise. 2

3. Consider the following variant of Euclid’s algorithm for computing the greatest common
divisor of two positive integers.

Algorithm Euclid Simplified (m,n);
begin

// assume that m > 0 ∧ n > 0
x := m;
y := n;
while x 6= 0 ∧ y 6= 0 do

if x < y then swap(x,y);
x := x− y;

od
. . .

end

where swap(x,y) exchanges the values of x and y.

(a) (5 points) To speak about the values of a variable at different times during an execu-
tion, let m′, n′, x′, and y′ denote respectively the new values of m, n, x, and y after
the next iteration of the while loop (m, n, x, and y themselves denote the current
values of these variables at the start of the next iteration). Please give a precise
relation between m′, n′, x′, and y′ and m, n, x, and y.

Solution. From the loop body, we deduce the following relationship (assuming that
the loop condition holds):

((x < y)→ (x′ = y − x) ∧ (y′ = x))
∧ ((x ≥ y)→ (x′ = x− y) ∧ (y′ = y))
∧ m′ = m
∧ n′ = n

2

(b) (10 points) Prove by induction that the following is a loop invariant of the while loop:

x ≥ 0 ∧ y ≥ 0 ∧ (x 6= 0 ∨ y 6= 0) ∧ gcd(x, y) = gcd(m,n).

(Note: by convention, gcd(0, z) = gcd(z, 0) = z for z > 0.)

Solution. Let Inv(m,n, x, y) denote the assertion to be proven a loop invariant.

(1) When the flow of control reaches the loop for the first time, x = m and y = n, with
m > 0 and n > 0. Obviously, x ≥ 0, y ≥ 0, x 6= 0∨ y 6= 0, and gcd(x, y) = gcd(m,n)
and therefore the assertion Inv(m,n, x, y) holds.

(2) Assume that Inv(m,n, x, y) is true at the start of the next iteration and the loop
condition (x 6= 0 ∧ y 6= 0) holds. We need to show that Inv(m′, n′, x′, y′) also holds.

3



There are two cases to consider: when x < y and when x ≥ y. We prove the first
case; the second case can be proven similarly.

Suppose x < y. x′ = y−x > 0 and hence x′ ≥ 0; also, y′ = x ≥ 0 (from the induction
hypothesis). These also imply that x′ 6= 0 ∨ y′ 6= 0. gcd(x′, y′) = gcd(y − x, x) =
gcd(y, x) = gcd(x, y), which from the induction hypothesis equals gcd(m,n) =
gcd(m′, n′), and therefore gcd(x′, y′) = gcd(m′, n′). Therefore, Inv(m′, n′, x′, y′)
holds and this concludes the proof. 2

4. Consider the Knapsack Problem: Given a set S of n items, where the i-th item has an
integer size S[i], and an integer K, find a subset of the items whose sizes sum to exactly
K or determine that no such subset exists.

We have discussed in class two approaches to implementing a solution that we designed
by induction: one uses dynamic programming (see the Appendix), while the other uses
recursive function calls.

Suppose there are 5 items, with sizes 2, 3, 5, 7, 8, and we are looking for a subset whose
sizes sum to 15. Assuming recursive function calls are used, please give the two-dimension
table P whose entries are filled with -, O, I, or left blank when the algorithm terminates.
Which entries of P [n,K] are visited/computed more than once? Please mark those entries
in the table.

Solution.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

O - (-) (-) - - (-) (-) - - -

k1 = 2 O - - - - - - -

k2 = 3 I - - -

k3 = 5 I -

k4 = 7 I

k5 = 8 O

P [0, 3], P [0, 5], P [0, 8], and P [0, 10] are visited more than once. 2

5. Show all intermediate and the final AVL trees formed by inserting the numbers 6, 5, 3, 1,
2, and 4 (in this order) into an empty tree. Please use the following ordering convention:
the key of an internal node is larger than that of its left child and smaller than that of
its right child. If re-balancing operations are performed, please also show the tree before
re-balancing and indicate what type of rotation is used in the re-balancing.

Solution. (Wei-Hsien Chang)

4



2

6. The input is a set S with n real numbers. Design an O(n) time algorithm to find a number
that is not in the set. Prove that Ω(n) is a lower bound on the number of steps required
to solve this problem.

Solution. When there is just one number (i.e., n = 1) in S, it is trivial to find a real
number different from the number in S, e.g., by adding one to or subtracting one from
the existing number. When there are exactly two numbers, we simply take their average
which will be different from both numbers, since by the definition of a set, all numbers in
S are distinct. When there are more than two numbers, we proceed as follows.

Store the first two numbers as a pair and read the remaining numbers one by one. When
the next number read falls between the pair, we replace the smaller of the pair by the
number just read. At the end we will have a pair of real numbers and none of the numbers
in S falls between the pair. We take the average of the pair which will be different any
number in S.

We next argue for the lower bound Ω(n). This is quite straightforward, since every number
in S must be read and there are n numbers. Any algorithm that skips a number may
return a wrong result, as the result may happen to be equal to the number that is skipped.
2

7. Design an efficient algorithm that, given an array A of n integers and an integer x,
determine whether A contains two integers whose sum is exactly x. Please present your
algorithm in an adequate pseudo code and make assumptions wherever necessary. Give
an analysis of its time complexity. The more efficient your algorithm is, the more points
you will be credited for this problem.

5



Solution. The straightforward solution of trying every pair in A would take O(n2) time,

as there are n(n−1)
2 possible pairs. When A is sorted (in increasing order), finding the pair

(if it exists) can be done much more efficiently as follows: If A[1] + A[n] < x, then A[1]
cannot be one of the pair we are looking for, as A[1] +A[j] will be smaller than x for any
j ≤ n. On the other hand, if A[1] + A[n] > x, then A[n] cannot be one of the pair we
are looking for, as A[i] + A[n] will be greater than x for any i ≥ 1. In either case, we can
eliminate one element. So, we sort A first with, for example, the heapsort algorithm and
then invoke the procedure below.

procedure Find Pair (A,n, x);
begin

i := 1;
j := n;
while i < j do

if A[i] + A[j] = x then
break;

if A[i] + A[j] < x then
i := i + 1;

else j := j − 1;
if i < j then

print i, j;
else print “no solution”

end

The while loop will be executed at most n−1 times, hence the running time of the proce-
dure is O(n). Together with the sorting part, the whole algorithm will run in O(n log n)
time. 2

8. Consider rearranging the following array into a max heap using the bottom-up approach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5 3 7 1 2 8 14 6 11 4 10 13 12 9 15

Please show the result (i.e., the contents of the array) after a new element is added to the
current collection of heaps (at the bottom) until the entire array has become a heap.

Solution. (Jui-Shun Lai)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5 3 7 1 2 8 14 6 11 4 10 13 12 9 15

5 3 7 1 2 8 15 6 11 4 10 13 12 9 14

5 3 7 1 2 13 15 6 11 4 10 8 12 9 14

5 3 7 11 2 13 15 6 1 4 10 8 12 9 14

5 3 15 11 2 13 14 6 1 4 10 8 12 9 7

5 11 15 6 2 13 14 3 1 4 10 8 12 9 7

15 11 14 6 2 13 9 3 1 4 10 8 12 5 7

2

9. (15 points) Below is a variation of the n-coins problem.

6



You are given a set of n coins {c1, c2, . . . , cn}, among which at least n − 1 are
identical “true” coins and at most one coin is “false”. A false coin is either
lighter or heavier than a true coin. Also, you are given a balance scale, which
you may use to compare the total weight of any m coins with that of any other
m coins. The problem is to find the “false” coin, or show that there is no such
coin, by making some sequence of comparisons using the balance scale.

(a) For the case of n = 12, design a scheme to find the false coin (if there is one) with
only three comparisons using the balance. Please use c1, c2, . . ., c12 to identify the
coins in your scheme.

Solution. Below is a scheme, presented as a decision tree, for finding the false coin
(if there is any) among the given 12 coins. As the label of a leaf, ci (ci) means that
coin ci is a heavier (lighter) false coin. Two of the leaves are impossible outcomes
and are marked with ×, while

√
marks the outcome that there is no false coin.

c1c2c3c4 : c5c6c7c8

c1c2c5 : c3c4c6

c1 : c2

c1c6c2

c7 : c8

c8×c7

c3 : c4

c3c5c4

c1c9 : c10c11

c10 : c11

c11c9c10

c1 : c12

c12
√

c12

c10 : c11

c10c9c11

c1c2c5 : c3c4c6

c3 : c4

c4c5c3

c7 : c8

c7×c8

c1 : c2

c2c6c1

>
=

<

2

(b) Prove that, when n = 12, it is not possible to find the false coin with just two
comparisons, implying that using just three comparisons is optimal. (Hint: think
about decision trees and how many possible outcomes there can be.)

Solution. One of the 12 coins may be a false coin and it can be either lighter or
heavier, which represents 24 possible outcomes. Together with the case of no false
coin, there are totally 25 possible outcomes. One comparison with the balance may
produce three possible results, and two comparisons produces at most nine results.
This is insufficient for covering the 25 possible outcomes. 2

(c) To generalize the preceding result, prove that in the worst case it is impossible to

solve the n-coins problem with k comparisons (for any n and k) if n > (3k−1)
2 .

Solution. As we have noted in the previous subproblem, each use of the balance scale
may produce three possible results. Solutions to the n-coins problem fall within the
model of decision trees where each internal node has three branches. Any such tree
of height k can contain at most 3k leaves, representing at most 3k different outcomes.

For n coins, there are 2n + 1 possible outcomes: (a) one of the n coins is lighter (n
possibilities), (b) one of the n coins is heavier (another n possibilities), and (c) none
of the coins is false (one possibility). Therefore, 3k must be greater than or equal to
2n + 1 for a solution with k comparisons to exist. In other words, no solution with

k comparisons exists if 2n + 1 > 3k, i.e., if n > (3k−1)
2 . 2

Appendix

• Below is an algorithm for determining whether a solution to the Knapsack Problem exists.

7



Algorithm Knapsack (S,K);
begin

P [0, 0].exist := true;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := false

else if k − S[i] ≥ 0 then
if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := true

end

8


