
Algorithms [Compiled on February 18, 2013] Spring 2013

Appendix to Chapter 2 of [Manber]:
Proving a Loop Invariant

Below is the program given in Chapter 2 (Page 27) of [Manber 1989] that converts a decimal

number into a binary one:

Algorithm Convert to Binary (n);

begin

t := n;

k := 0;

while t > 0 do

k := k + 1;

b[k] := t mod 2;

t := t div 2;

end

Let Inv(n, t, k, b) denote the following assertion:

n = t× 2k + m and t ≥ 0,

where m is the binary number represented by b, i.e.,

m =

{
0 if k = 0
b[k]× 2k−1 + b[k − 1]× 2k−2 + · · ·+ b[1]× 20 if k ≥ 1

Claim: Inv(n, t, k, b) is a loop invariant of the while loop, assuming that the decimal number

passed via variable n is non-negative. (The invariant is sufficient to deduce that, when the

program terminates, b stores the binary representation of n.)

Proof: The proof is by induction on the number of times the loop body is executed. More

specifically, we show that (1) the assertion is true when the flow of control reaches the loop for

the first time and (2) given that the assertion is true and the loop condition holds, the assertion

will remain true after the next iteration (i.e., after the loop body is executed once more).

(1) When the flow of control reaches the loop for the first time, t = n (≥ 0) and k = 0. With m

denoting the binary number represented by b, t×2k +m = n×20 +0 = n and t ≥ 0. Therefore,

the assertion Inv(n, t, k, b) holds.

(2) Assume that Inv(n, t, k, b) is true at the start of the next iteration and the loop condition

(t > 0) holds. Let n′, t′, k′, and b′ denote respectively the values of n, t, k, and b after the next

iteration. We need to show that Inv(n′, t′, k′, b′) also holds.

1



From the loop body, we deduce the following relationship:

k′ = k + 1
b′[k′] = t mod 2
b′[i] = b[i] for all i 6= k′

t′ = t div 2
n′ = n (the value of n never changes)

There are two cases to consider: when t is odd and when t is even. We prove the first case;

the second case can be proven similarly. If t is odd, t mod 2 contributes 1 to b′[k′]. The

binary number m′ represented by b′ equals b′[k′]× 2k
′−1 + b′[k′ − 1]× 2k

′−2 + · · ·+ b′[1]× 20 =

2k
′−1 + b[k]× 2k−1 + b[k − 1]× 2k−2 + · · ·+ b[1]× 20 = 2k + m. We then have t′ × 2k

′
+ m′ =

t−1
2 × 2k+1 + 2k + m = (t − 1) × 2k + 2k + m = t × 2k + m = n = n′. In addition, since t > 0

(given that the loop condition holds), t′ = t div 2 ≥ 0. Therefore, Inv(n′, t′, k′, b′) holds after

the next iteration in the case of odd t.

2


