Algorithms 2013: Analysis of Algorithms

(Based on [Manber 1989])

Yih-Kuen Tsay

1 Introduction

Introduction

- The purpose of algorithm analysis is to predict the behavior (running time, space requirement, etc.) of an algorithm without implementing it on a specific computer. (Why?)
- As the exact behavior of an algorithm is hard to predict, the analysis is usually an approximation:
- Relative to the input size (usually denoted by n): input possibilities too enormous to elaborate
- Asymptotic: should care more about larger inputs
- Worst-Case: easier to do, often representative (Why not average-case?)
- Such an approximation is usually good enough for comparing different algorithms for the same problem.

Complexity

- Theoretically, "complexity of an algorithm" is a more precise term for "approximate behavior of an algorithm".
- Two most important measures of complexity:
- Time Complexity an upper bound on the number of steps that the algorithm performs.
- Space Complexity an upper bound on the amount of temporary storage required for running the algorithm (excluding the input, the output, and the program itself).
- We will focus on time complexity.

Comparing Running Times

- How do we compare the following running times?

1. $100 n$
2. $2 n^{2}+50$
3. $100 n^{1.8}$

- We will study an approach (the O notation) that allows us to ignore constant factors and concentrate on the behavior as n goes to infinity.
- For most algorithms, the constants in the expressions of their running times tend to be small.

2 The O Notation

The O Notation

- A function $g(n)$ is $O(f(n))$ for another function $f(n)$ if there exist constants c and N such that, for all $n \geq N, g(n) \leq c f(n)$.
- The function $g(n)$ may be substantially less than $c f(n)$; the O notation bounds it only from above.
- The O notation allows us to ignore constants conveniently.
- Examples:
$-5 n^{2}+15=O\left(n^{2}\right) .\left(\right.$ cf. $5 n^{2}+15 \leq O\left(n^{2}\right)$ or $\left.5 n^{2}+15 \in O\left(n^{2}\right)\right)$
$-5 n^{2}+15=O\left(n^{3}\right) .\left(\right.$ cf. $5 n^{2}+15 \leq O\left(n^{3}\right)$ or $\left.5 n^{2}+15 \in O\left(n^{3}\right)\right)$
- In an expression, $T(n)=3 n^{2}+O(n)$.

The O Notation (cont.)

- No need to specify the base of a logarithm.
$-\log _{2} n=\frac{\log _{10} n}{\log _{10} 2}=\frac{1}{\log _{10} 2} \log _{10} n$.
- For example, we can just write $O(\log n)$.
- $O(1)$ denotes a constant.

Properties of O

- We can add and multiply with O.

Lemma 1 (3.2). 1. If $f(n)=O(s(n))$ and $g(n)=O(r(n))$, then $f(n)+g(n)=O(s(n)+r(n))$. 2. If $f(n)=O(s(n))$ and $g(n)=O(r(n))$, then $f(n) \cdot g(n)=O(s(n) \cdot r(n))$.

- However, we cannot subtract or divide with O.

$$
\begin{aligned}
& -2 n=O(n), n=O(n), \text { and } 2 n-n=n \neq O(n-n) \\
& -n^{2}=O\left(n^{2}\right), n=O\left(n^{2}\right), \text { and } n^{2} / n=n \neq O\left(n^{2} / n^{2}\right)
\end{aligned}
$$

3 Speed of Growth

Polynomial vs. Exponential

- A function $f(n)$ is monotonically growing if $n_{1} \geq n_{2}$ implies that $f\left(n_{1}\right) \geq f\left(n_{2}\right)$.
- An exponential function grows at least as fast as a polynomial function does.

Theorem 2 (3.1). For all constants $c>0$ and $a>1$, and for all monotonically growing functions $f(n),(f(n))^{c}=O\left(a^{f(n)}\right)$.

- Examples:
- Take n as $f(n), n^{c}=O\left(a^{n}\right)$.
- Take $\log _{a} n$ as $f(n),\left(\log _{a} n\right)^{c}=O\left(a^{\log _{a} n}\right)=O(n)$.

Speed of Growth

$\log n$	n	$n \log n$	n^{2}	n^{3}	2^{n}
0	1	0	1	1	2
1	2	2	4	8	4
2	4	8	16	64	16
3	8	24	64	512	256
4	16	64	256	4,096	65,536
5	32	160	1,024	32,768	$4,294,967,296$

Table 1.7 Function values

Source: [E. Horowitz et al. 1998].

Speed of Growth (cont.)

	time 1 $1000 ~ s t e p s / s e c ~$	time 2 $2000 ~ s t e p s / s e c ~$	time 3 $4000 \mathrm{steps} / \mathrm{sec}$	time 4^{\prime} $8000 \mathrm{steps} / \mathrm{sec}$
running times	0.010	0.005	0.003	0.001
$\log _{2} n$	1	0.5	0.25	0.125
n	10	5	2.5	1.25
$\log _{2} n$	32	16	8	4
n^{2}	1,000	500	250	125
n^{3}	$1,000,000$	500,000	250,000	125,000
1.1^{n}	10^{39}	10^{39}	10^{38}	10^{38}

Table 3.1 Running times (int seconds) under different assumptions $(\mathrm{n}=1000)$

Source: [Manber 1989].
O, o, Ω, and Θ

- Let $T(n)$ be the number of steps required to solve a given problem for input size n.
- We say that $T(n)=\Omega(g(n))$ or the problem has a lower bound of $\Omega(g(n))$ if there exist constants c and N such that, for all $n \geq N, T(n) \geq c g(n)$.
- If a certain function $f(n)$ satisfies both $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$, then we say that $f(n)=$ $\Theta(g(n))$.
- We say that $f(n)=o(g(n))$ if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$.

Polynomial vs. Exponential (cont.)

- An exponential function grows faster than a polynomial function does.

Theorem 3 (3.3). For all constants $c>0$ and $a>1$, and for all monotonically growing functions $f(n)$, we have

$$
(f(n))^{c}=o\left(a^{f(n)}\right)
$$

- Consider a previous example again: Take $\log _{a} n$ as $f(n)$. For all $c>0$ and $a>1$,

$$
\left(\log _{a} n\right)^{c}=o\left(a^{\log _{a} n}\right)=o(n) .
$$

4 Sums

Sums

- Techniques for summing expressions are essential for complexity analysis.
- For example, given that we know

$$
S_{0}(n)=\sum_{i=1}^{n} 1=n
$$

and

$$
S_{1}(n)=\sum_{i=1}^{n} i=1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

we want to compute the sum

$$
S_{2}(n)=\sum_{i=1}^{n} i^{2}=1^{2}+2^{2}+3^{2}+\cdots+n^{2}
$$

Sums (cont.)

From

$$
(i+1)^{3}=i^{3}+3 i^{2}+3 i+1
$$

we have

$$
\begin{aligned}
(i+1)^{3}-i^{3} & =3 i^{2}+3 i+1 . \\
2^{3}-1^{3} & =3 \times 1^{2}+3 \times 1+1 \\
3^{3}-2^{3} & =3 \times 2^{2}+3 \times 2+1 \\
4^{3}-3^{3} & =3 \times 3^{2}+3 \times 3+1 \\
\cdots & \cdots \\
(n+1)^{3}-n^{3} & =3 \times n^{2}+3 \times n+1 \\
\hline(n+1)^{3}-1 & =3 \times S_{2}(n)+3 \times S_{1}(n)+S_{0}(n) \\
\hline\left(S_{3}(n+1)-S_{3}(1)\right)-S_{3}(n) & =3 \times S_{2}(n)+3 \times S_{1}(n)+S_{0}(n)
\end{aligned}
$$

Sums (cont.)

- So, we have

$$
(n+1)^{3}-1=3 \times S_{2}(n)+3 \times S_{1}(n)+S_{0}(n)
$$

- Given $S_{0}(n)$ and $S_{1}(n)$, the sum $S_{2}(n)$ can be computed by straightforward algebra.
- Recall that the left-hand side $(n+1)^{3}-1$ equals $\left(S_{3}(n+1)-S_{3}(1)\right)-S_{3}(n)$, a result from "shifting and canceling" terms of two sums.
- This generalizes to $S_{k}(n)$, for $k>2$.
- Similar shifting and canceling techniques apply to other kinds of sums.

5 Recurrence Relations

Recurrence Relations

- A recurrence relation is a way to define a function by an expression involving the same function.
- The Fibonacci numbers can be defined as follows:

$$
\left\{\begin{array}{l}
F(1)=1 \\
F(2)=1 \\
F(n)=F(n-2)+F(n-1)
\end{array}\right.
$$

We would need $k-2$ steps to compute $F(k)$.

- It is more convenient to have an explicit (or closed-form) expression.
- To obtain the explicit expression is called solving the recurrence relation.

Guessing and Proving an Upper Bound

- Recurrence relation: $\left\{\begin{array}{l}T(2)=1 \\ T(2 n) \leq 2 T(n)+2 n-1\end{array}\right.$
- Guess: $T(n)=O(n \log n)$.
- Proof:

1. Base case: $T(2) \leq 2 \log 2$.
2. Inductive step: $T(2 n) \leq 2 T(n)+2 n-1$

$$
\begin{aligned}
& \leq 2(n \log n)+2 n-1 \\
& =2 n \log n+2 n \log 2-1 \\
& \leq 2 n(\log n+\log 2) \\
& =2 n \log 2 n
\end{aligned}
$$

Recurrent Relations with Full History

- Example:

$$
T(n)=c+\sum_{i=1}^{n-1} T(i)
$$

where c is a constant and $T(1)$ is given separately.

- $T(n)-T(n-1)=\left(c+\sum_{i=1}^{n-1} T(i)\right)-\left(c+\sum_{i=1}^{n-2} T(i)\right)=T(n-1)$; hence, $T(n)=2 T(n-1)$. (This holds only for $n \geq 3$.)
- So, we get

$$
\left\{\begin{array}{l}
T(2)=c+T(1) \\
T(n)=2 T(n-1) \quad \text { if } n \geq 3
\end{array}\right.
$$

which is easier to solve.

- Other examples as a reading assignment ...

6 Divide and Conquer Relations

Divide and Conquer Relations

- The running time $T(n)$ of a divide-and-conquer algorithm satisfies

$$
T(n)=a T(n / b)+c n^{k}
$$

where
$-a$ is the number of subproblems,
$-n / b$ is the size of each subproblem, and
$-c n^{k}$ is the running time of the solutions-combining algorithm.

Divide and Conquer Relations (cont.)
Assume, for simplicity, $n=b^{m}\left(\frac{n}{b^{m}}=1, \frac{n}{b^{m-1}}=b\right.$, etc. $)$.

$$
\begin{aligned}
T(n) & =a T\left(\frac{n}{b}\right)+c n^{k} \\
& =a\left(a T\left(\frac{n}{b^{2}}\right)+c\left(\frac{n}{b}\right)^{k}\right)+c n^{k} \\
& =a\left(a\left(a T\left(\frac{n}{b^{3}}\right)+c\left(\frac{n}{b^{2}}\right)^{k}\right)+c\left(\frac{n}{b}\right)^{k}\right)+c n^{k} \\
& \cdots \\
& =a\left(a\left(\cdots\left(a T\left(\frac{n}{b^{m}}\right)+c\left(\frac{n}{b^{m-1}}\right)^{k}\right)+\cdots\right)+c\left(\frac{n}{b}\right)^{k}\right)+c n^{k}
\end{aligned}
$$

Assuming $T(1)=c$,

$$
T(n)=c \sum_{i=0}^{m} a^{m-i} b^{i k}=c a^{m} \sum_{i=0}^{m}\left(\frac{b^{k}}{a}\right)^{i} .
$$

Three cases: $\frac{b^{k}}{a}<1, \frac{b^{k}}{a}=1$, and $\frac{b^{k}}{a}>1$.

Divide and Conquer Relations (cont.)

Theorem 4 (3.4). The solution of the recurrence relation $T(n)=a T(n / b)+c n^{k}$, where a and b are integer constants, $a \geq 1, b \geq 2$, and c and k are positive constants, is

$$
T(n)= \begin{cases}O\left(n^{\log _{b} a}\right) & \text { if } a>b^{k} \\ O\left(n^{k} \log n\right) & \text { if } a=b^{k} \\ O\left(n^{k}\right) & \text { if } a<b^{k}\end{cases}
$$

7 Useful Facts

Useful Facts

- Harmonic series

$$
H_{n}=\sum_{k=1}^{n} \frac{1}{k}=\ln n+\gamma+O(1 / n)
$$

where $\gamma=0.577 \ldots$ is Euler's constant.

- Sum of logarithms

$$
\begin{aligned}
\sum_{i=1}^{n}\left\lfloor\log _{2} i\right\rfloor & =(n+1)\left\lfloor\log _{2} n\right\rfloor-2^{\left\lfloor\log _{2} n\right\rfloor+1}+2 \\
& =\Theta(n \log n)
\end{aligned}
$$

Useful Facts (cont.)

- Bounding a summation by an integral:

If $f(x)$ is monotonically increasing, then

$$
\sum_{i=1}^{n} f(i) \leq \int_{1}^{n+1} f(x) d x
$$

If $f(x)$ is monotonically decreasing, then

$$
\sum_{i=1}^{n} f(i) \leq f(1)+\int_{1}^{n} f(x) d x
$$

- Stirling's approximation

$$
n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}(1+O(1 / n))
$$

