
Design by Induction
(Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 1 / 29



Introduction

It is not necessary to design the steps required to solve a
problem from scratch.

It is sufficient to guarantee the following:

1. It is possible to solve one small instance or a few small instances
of the problem. (base case)

2. A solution to every problem/instance can be constructed from
solutions to smaller problems/instances. (inductive step)

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 2 / 29



Evaluating Polynomials

Problem

Given a sequence of real numbers an, an−1, · · · , a1, a0, and a real
number x, compute the value of the polynomial

Pn(x) = anxn + an−1xn−1 + · · ·+ a1x + a0.

Motivation: different approaches to the inductive step may result in
algorithms of very different time complexities.

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 3 / 29



Evaluating Polynomials

Problem

Given a sequence of real numbers an, an−1, · · · , a1, a0, and a real
number x, compute the value of the polynomial

Pn(x) = anxn + an−1xn−1 + · · ·+ a1x + a0.

Motivation: different approaches to the inductive step may result in
algorithms of very different time complexities.

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 3 / 29



Evaluating Polynomials (cont.)

Let Pn−1(x) = an−1xn−1 + · · ·+ a1x + a0.

Induction hypothesis (first attempt)
We know how to evaluate a polynomial represented by the input
an−1, · · · , a1, a0, at the point x , i.e., we know how to compute
Pn−1(x).

Pn(x) = anxn + Pn−1(x).

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 4 / 29



Evaluating Polynomials (cont.)

Induction hypothesis (second attempt)
We know how to compute Pn−1(x), and we know how to
compute xn−1.

Pn(x) = anx(xn−1) + Pn−1(x).

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 5 / 29



Evaluating Polynomials (cont.)

Let P ′n−1(x) = anxn−1 + an−1xn−2 + · · ·+ a1.

Induction hypothesis (final attempt)
We know how to evaluate a polynomial represented by the
coefficients an, an−1, · · · , a1, at the point x , i.e., we know how
to compute P ′n−1(x).

Pn(x) = P ′n(x) = P ′n−1(x) · x + a0.

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 6 / 29



Evaluating Polynomials (cont.)

More generally,
P ′0(x) = an

P ′i (x) = P ′i−1(x) · x + an−i , for 1 ≤ i ≤ n

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 7 / 29



Evaluating Polynomials (cont.)

Algorithm Polynomial Evaluation (ā, x);
begin

P := an;
for i := 1 to n do

P := x ∗ P + an−i
end

This algorithm is known as Horner’s rule.

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 8 / 29



Maximal Induced Subgraph

Problem

Given an undirected graph G = (V ,E ) and an integer k, find an
induced subgraph H = (U ,F ) of G of maximum size such that all
vertices of H have degree ≥ k (in H), or conclude that no such
induced subgraph exists.

Design Idea: in the inductive step, we try to remove one vertex (that
cannot possibly be part of the solution) to get a smaller instance.

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 9 / 29



Maximal Induced Subgraph

Problem

Given an undirected graph G = (V ,E ) and an integer k, find an
induced subgraph H = (U ,F ) of G of maximum size such that all
vertices of H have degree ≥ k (in H), or conclude that no such
induced subgraph exists.

Design Idea: in the inductive step, we try to remove one vertex (that
cannot possibly be part of the solution) to get a smaller instance.

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 9 / 29



One-to-One Mapping

Problem

Given a finite set A and a mapping f from A to itself, find a subset
S ⊆ A with the maximum number of elements, such that
(1) the function f maps every element of S to another element of S
(i.e., f maps S into itself), and
(2) no two elements of S are mapped to the same element (i.e., f is
one-to-one when restricted to S).

Design Idea: similar to the previous problem; in the inductive step,
we try to remove one element (that cannot possibly be part of the
solution) to get a smaller instance.

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 10 / 29



One-to-One Mapping

Problem

Given a finite set A and a mapping f from A to itself, find a subset
S ⊆ A with the maximum number of elements, such that
(1) the function f maps every element of S to another element of S
(i.e., f maps S into itself), and
(2) no two elements of S are mapped to the same element (i.e., f is
one-to-one when restricted to S).

Design Idea: similar to the previous problem; in the inductive step,
we try to remove one element (that cannot possibly be part of the
solution) to get a smaller instance.

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 10 / 29



One-to-One Mapping (cont.)

Algorithm Mapping (f , n);
begin

S := A;
for j := 1 to n do c[j ] := 0;
for j := 1 to n do increment c[f [j ]];
for j := 1 to n do

if c[j ] = 0 then put j in Queue;
while Queue not empty do

remove i from the top of Queue;
S := S − {i};
decrement c[f [i ]];
if c[f [i ]] = 0 then put f [i ] in Queue

end

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 11 / 29



Celebrity

Problem

Given an n × n adjacency matrix, determine whether there exists an i
(the “celebrity”) such that all the entries in the i-th column (except
for the ii -th entry) are 1, and all the entries in the i-th row (except
for the ii -th entry) are 0.

Note: A celebrity corresponds to a sink of the directed graph.

Note: Every directed graph has at most one sink.

Motivation: the trivial solution has a time complexity of O(n2). Can
we do better, in O(n)?

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 12 / 29



Celebrity

Problem

Given an n × n adjacency matrix, determine whether there exists an i
(the “celebrity”) such that all the entries in the i-th column (except
for the ii -th entry) are 1, and all the entries in the i-th row (except
for the ii -th entry) are 0.

Note: A celebrity corresponds to a sink of the directed graph.

Note: Every directed graph has at most one sink.

Motivation: the trivial solution has a time complexity of O(n2). Can
we do better, in O(n)?

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 12 / 29



Celebrity (cont.)

Algorithm Celebrity (Know);
begin

i := 1;
j := 2;
next := 3;
while next ≤ n + 1 do

if Know[i , j ] then i := next
else j := next;

next := next + 1;
if i = n + 1 then candidate := j

else candidate := i ;

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 13 / 29



Celebrity (cont.)

wrong := false;
k := 1;
Know[candidate, candidate] := false;
while not wrong and k ≤ n do

if Know[candidate, k] then wrong := true;
if not Know[k , candidate] then
if candidate 6= k then wrong := true;

k := k + 1;
if not wrong then celebrity := candidate

else celebrity := 0;
end

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 14 / 29



The Skyline Problem

Problem

Given the exact locations and shapes of several rectangular buildings
in a city, draw the skyline (in two dimension) of these buildings,
eliminating hidden lines.

Motivation: different approaches to the inductive step may result in
algorithms of very different time complexities.

Compare: adding buildings one by one to an existing skyline vs.
merging two skylines of about the same size

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 15 / 29



The Skyline Problem

Problem

Given the exact locations and shapes of several rectangular buildings
in a city, draw the skyline (in two dimension) of these buildings,
eliminating hidden lines.

Motivation: different approaches to the inductive step may result in
algorithms of very different time complexities.

Compare: adding buildings one by one to an existing skyline vs.
merging two skylines of about the same size

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 15 / 29



Representation of a Skyline

(1,11,5), (2,6,7), (3,13,9), (12,7,16), (14,3,25), (19,18,22),
(23,13,29), and (24,4,28).

0 5 10 15 20 25 30

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 16 / 29



Representation of a Skyline (cont.)

(1,11,3,13,9,0,12,7,16,3,19,18,22,3,23,13,29).

0 5 10 15 20 25 30

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 17 / 29



Adding a Building

Add (5,9,26) to (1,11,3,13,9,0,12,7,16,3,19,18,22,3,23,13,29).

0 5 10 15 20 25 30

The skyline becomes (1,11,3,13,9,9,19,18,22,9,23,13,29).

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 18 / 29



Merging Two Skylines

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 19 / 29



Balance Factors in Binary Trees

Problem

Given a binary tree T with n nodes, compute the balance factors of
all nodes.

The balance factor of a node is defined as the difference between the
height of the node’s left subtree and the height of the node’s right
subtree.

Motivation: an example of why we must strengthen the hypothesis
(and hence the problem to be solved).

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 20 / 29



Balance Factors in Binary Trees

Problem

Given a binary tree T with n nodes, compute the balance factors of
all nodes.

The balance factor of a node is defined as the difference between the
height of the node’s left subtree and the height of the node’s right
subtree.

Motivation: an example of why we must strengthen the hypothesis
(and hence the problem to be solved).

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 20 / 29



Balance Factors in Binary Trees (cont.)

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 21 / 29



Balance Factors in Binary Trees (cont.)

Induction hypothesis
We know how to compute balance factors of all nodes in trees
that have < n nodes.

Stronger induction hypothesis
We know how to compute balance factors and heights of all
nodes in trees that have < n nodes.

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 22 / 29



Balance Factors in Binary Trees (cont.)

Induction hypothesis
We know how to compute balance factors of all nodes in trees
that have < n nodes.

Stronger induction hypothesis
We know how to compute balance factors and heights of all
nodes in trees that have < n nodes.

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 22 / 29



Maximum Consecutive Subsequence

Problem

Given a sequence x1, x2, · · · , xn of real numbers (not necessarily
positive) find a subsequence xi , xi+1, · · · , xj (of consecutive
elements) such that the sum of the numbers in it is maximum over
all subsequences of consecutive elements.

Example:
In the sequence (2,−3, 1.5,−1, 3,−2,−3, 3), the maximum
subsequence is (1.5,−1, 3).

Motivation: another example of strengthening the hypothesis.

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 23 / 29



Maximum Consecutive Subsequence

Problem

Given a sequence x1, x2, · · · , xn of real numbers (not necessarily
positive) find a subsequence xi , xi+1, · · · , xj (of consecutive
elements) such that the sum of the numbers in it is maximum over
all subsequences of consecutive elements.

Example:
In the sequence (2,−3, 1.5,−1, 3,−2,−3, 3), the maximum
subsequence is (1.5,−1, 3).

Motivation: another example of strengthening the hypothesis.

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 23 / 29



Maximum Consecutive Subsequence (cont.)

Induction hypothesis
We know how to find the maximum subsequence in sequences of
size < n.

Stronger induction hypothesis
We know how to find, in sequences of size < n, the maximum
subsequence overall and the maximum subsequence that is a
suffix.

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 24 / 29



Maximum Consecutive Subsequence (cont.)

Induction hypothesis
We know how to find the maximum subsequence in sequences of
size < n.

Stronger induction hypothesis
We know how to find, in sequences of size < n, the maximum
subsequence overall and the maximum subsequence that is a
suffix.

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 24 / 29



Maximum Consecutive Subsequence (cont.)

Algorithm Max Consec Subseq (X , n);
begin

Global Max := 0;
Suffix Max := 0;
for i := 1 to n do

if x [i ] + Suffix Max > Global Max then
Suffix Max := Suffix Max + x [i ];
Global Max := Suffix Max

else if x [i ] + Suffix Max > 0 then
Suffix Max := Suffix Max + x [i ]

else Suffix Max := 0
end

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 25 / 29



The Knapsack Problem

Problem

Given an integer K and n items of different sizes such that the i-th
item has an integer size ki , find a subset of the items whose sizes
sum to exactly K , or determine that no such subset exists.

Design Idea: use strong induction so that solutions to all smaller
instances may be used.

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 26 / 29



The Knapsack Problem

Problem

Given an integer K and n items of different sizes such that the i-th
item has an integer size ki , find a subset of the items whose sizes
sum to exactly K , or determine that no such subset exists.

Design Idea: use strong induction so that solutions to all smaller
instances may be used.

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 26 / 29



The Knapsack Problem (cont.)

Let P(n,K ) denote the problem where n is the number of items
and K is the size of the knapsack.

Induction hypothesis
We know how to solve P(n − 1,K ).

Stronger induction hypothesis
We know how to solve P(n − 1, k), for all 0 ≤ k ≤ K .

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 27 / 29



The Knapsack Problem (cont.)

Let P(n,K ) denote the problem where n is the number of items
and K is the size of the knapsack.

Induction hypothesis
We know how to solve P(n − 1,K ).

Stronger induction hypothesis
We know how to solve P(n − 1, k), for all 0 ≤ k ≤ K .

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 27 / 29



The Knapsack Problem (cont.)

An example of the table constructed for the knapsack problem:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

O - - - - - - - - - - - - - - - -
k1= 2 O - I - - - - - - - - - - - - - -
k2 = 3 O - O I - I - - - - - - - - - - -
k3 = 5 O - O O - O - I I - I - - - - - -
k4 = 6 O - O O - O I O O I O I - I I - I

“I”: a solution containing this item has been found.
“O”: a solution without this item has been found.
“-”: no solution has yet been found.

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 28 / 29



The Knapsack Problem (cont.)

Algorithm Knapsack (S ,K );
P[0, 0].exist := true;
for k := 1 to K do

P[0, k].exist := false;
for i := 1 to n do

for k := 0 to K do
P[i , k].exist := false;
if P[i − 1, k].exist then

P[i , k].exist := true;
P[i , k].belong := false

else if k − S [i ] ≥ 0 then
if P[i − 1, k − S [i ]].exist then

P[i , k].exist := true;
P[i , k].belong := true

Yih-Kuen Tsay (IM.NTU) Design by Induction Algorithms 2013 29 / 29


	Introduction
	Evaluating Polynomials
	Maximal Induced Subgraph
	One-to-One Mapping
	Celebrity
	The Skyline Problem
	Balance Factors in Binary Trees
	Maximum Consecutive Subsequence
	The Knapsack Problem

