
Analysis of Algorithms
(Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 1 / 23

Introduction

The purpose of algorithm analysis is to predict the behavior
(running time, space requirement, etc.) of an algorithm without
implementing it on a specific computer. (Why?)

As the exact behavior of an algorithm is hard to predict, the
analysis is usually an approximation:

Relative to the input size (usually denoted by n): input
possibilities too enormous to elaborate
Asymptotic: should care more about larger inputs
Worst-Case: easier to do, often representative (Why not
average-case?)

Such an approximation is usually good enough for comparing
different algorithms for the same problem.

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 2 / 23

Introduction

The purpose of algorithm analysis is to predict the behavior
(running time, space requirement, etc.) of an algorithm without
implementing it on a specific computer. (Why?)

As the exact behavior of an algorithm is hard to predict, the
analysis is usually an approximation:

Relative to the input size (usually denoted by n): input
possibilities too enormous to elaborate
Asymptotic: should care more about larger inputs
Worst-Case: easier to do, often representative (Why not
average-case?)

Such an approximation is usually good enough for comparing
different algorithms for the same problem.

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 2 / 23

Complexity

Theoretically, “complexity of an algorithm” is a more precise
term for “approximate behavior of an algorithm”.

Two most important measures of complexity:

Time Complexity
an upper bound on the number of steps that the algorithm
performs.
Space Complexity
an upper bound on the amount of temporary storage required
for running the algorithm (excluding the input, the output, and
the program itself).

We will focus on time complexity.

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 3 / 23

Comparing Running Times

How do we compare the following running times?

1. 100n
2. 2n2 + 50
3. 100n1.8

We will study an approach (the O notation) that allows us to
ignore constant factors and concentrate on the behavior as n
goes to infinity.

For most algorithms, the constants in the expressions of their
running times tend to be small.

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 4 / 23

Comparing Running Times

How do we compare the following running times?

1. 100n
2. 2n2 + 50
3. 100n1.8

We will study an approach (the O notation) that allows us to
ignore constant factors and concentrate on the behavior as n
goes to infinity.

For most algorithms, the constants in the expressions of their
running times tend to be small.

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 4 / 23

The O Notation

A function g(n) is O(f (n)) for another function f (n) if there
exist constants c and N such that, for all n ≥ N , g(n) ≤ cf (n).

The function g(n) may be substantially less than cf (n); the O
notation bounds it only from above.

The O notation allows us to ignore constants conveniently.

Examples:

5n2 + 15 = O(n2).
(cf. 5n2 + 15 ≤ O(n2) or 5n2 + 15 ∈ O(n2))
5n2 + 15 = O(n3).
(cf. 5n2 + 15 ≤ O(n3) or 5n2 + 15 ∈ O(n3))
In an expression, T (n) = 3n2 + O(n).

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 5 / 23

The O Notation

A function g(n) is O(f (n)) for another function f (n) if there
exist constants c and N such that, for all n ≥ N , g(n) ≤ cf (n).

The function g(n) may be substantially less than cf (n); the O
notation bounds it only from above.

The O notation allows us to ignore constants conveniently.

Examples:

5n2 + 15 = O(n2).
(cf. 5n2 + 15 ≤ O(n2) or 5n2 + 15 ∈ O(n2))
5n2 + 15 = O(n3).
(cf. 5n2 + 15 ≤ O(n3) or 5n2 + 15 ∈ O(n3))
In an expression, T (n) = 3n2 + O(n).

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 5 / 23

The O Notation (cont.)

No need to specify the base of a logarithm.

log2 n = log10 n
log10 2

= 1
log10 2

log10 n.

For example, we can just write O(log n).

O(1) denotes a constant.

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 6 / 23

Properties of O

We can add and multiply with O.

Lemma (3.2)

1. If f (n) = O(s(n)) and g(n) = O(r(n)), then
f (n) + g(n) = O(s(n) + r(n)).
2. If f (n) = O(s(n)) and g(n) = O(r(n)), then
f (n) · g(n) = O(s(n) · r(n)).

However, we cannot subtract or divide with O. (Why?)

2n = O(n), n = O(n), and 2n − n = n 6= O(n − n).
n2 = O(n2), n = O(n2), and n2/n = n 6= O(n2/n2).

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 7 / 23

Properties of O

We can add and multiply with O.

Lemma (3.2)

1. If f (n) = O(s(n)) and g(n) = O(r(n)), then
f (n) + g(n) = O(s(n) + r(n)).
2. If f (n) = O(s(n)) and g(n) = O(r(n)), then
f (n) · g(n) = O(s(n) · r(n)).

However, we cannot subtract or divide with O. (Why?)

2n = O(n), n = O(n), and 2n − n = n 6= O(n − n).
n2 = O(n2), n = O(n2), and n2/n = n 6= O(n2/n2).

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 7 / 23

Properties of O

We can add and multiply with O.

Lemma (3.2)

1. If f (n) = O(s(n)) and g(n) = O(r(n)), then
f (n) + g(n) = O(s(n) + r(n)).
2. If f (n) = O(s(n)) and g(n) = O(r(n)), then
f (n) · g(n) = O(s(n) · r(n)).

However, we cannot subtract or divide with O. (Why?)

2n = O(n), n = O(n), and 2n − n = n 6= O(n − n).
n2 = O(n2), n = O(n2), and n2/n = n 6= O(n2/n2).

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 7 / 23

Polynomial vs. Exponential

A function f (n) is monotonically growing if n1 ≥ n2 implies that
f (n1) ≥ f (n2).

An exponential function grows at least as fast as a polynomial
function does.

Theorem (3.1)

For all constants c > 0 and a > 1, and for all monotonically growing
functions f (n), (f (n))c = O(af (n)).

Examples:

Take n as f (n), nc = O(an).
Take loga n as f (n), (loga n)

c = O(aloga n) = O(n).

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 8 / 23

Polynomial vs. Exponential

A function f (n) is monotonically growing if n1 ≥ n2 implies that
f (n1) ≥ f (n2).

An exponential function grows at least as fast as a polynomial
function does.

Theorem (3.1)

For all constants c > 0 and a > 1, and for all monotonically growing
functions f (n), (f (n))c = O(af (n)).

Examples:

Take n as f (n), nc = O(an).
Take loga n as f (n), (loga n)

c = O(aloga n) = O(n).

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 8 / 23

Speed of Growth

Source: [E. Horowitz et al. 1998].

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 9 / 23

Speed of Growth (cont.)

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 10 / 23

O, o, Ω, and Θ

Let T (n) be the number of steps required to solve a given
problem for input size n.

We say that T (n) = Ω(g(n)) or the problem has a lower bound
of Ω(g(n)) if there exist constants c and N such that, for all
n ≥ N , T (n) ≥ cg(n).

If a certain function f (n) satisfies both f (n) = O(g(n)) and
f (n) = Ω(g(n)), then we say that f (n) = Θ(g(n)).

We say that f (n) = o(g(n)) if lim
n→∞

f (n)

g(n)
= 0.

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 11 / 23

O, o, Ω, and Θ

Let T (n) be the number of steps required to solve a given
problem for input size n.

We say that T (n) = Ω(g(n)) or the problem has a lower bound
of Ω(g(n)) if there exist constants c and N such that, for all
n ≥ N , T (n) ≥ cg(n).

If a certain function f (n) satisfies both f (n) = O(g(n)) and
f (n) = Ω(g(n)), then we say that f (n) = Θ(g(n)).

We say that f (n) = o(g(n)) if lim
n→∞

f (n)

g(n)
= 0.

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 11 / 23

Polynomial vs. Exponential (cont.)

An exponential function grows faster than a polynomial function
does.

Theorem (3.3)

For all constants c > 0 and a > 1, and for all monotonically growing
functions f (n), we have

(f (n))c = o(af (n)).

Consider a previous example again:
Take loga n as f (n). For all c > 0 and a > 1,

(loga n)c = o(aloga n) = o(n).

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 12 / 23

Sums

Techniques for summing expressions are essential for complexity
analysis.

For example, given that we know

S0(n) =
n∑

i=1

1 = n

and

S1(n) =
n∑

i=1

i = 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
,

we want to compute the sum

S2(n) =
n∑

i=1

i2 = 12 + 22 + 32 + · · ·+ n2.

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 13 / 23

Sums (cont.)

From
(i + 1)3 = i3 + 3i2 + 3i + 1,

we have
(i + 1)3 − i3 = 3i2 + 3i + 1.

23 − 13 = 3× 12 + 3× 1 + 1
33 − 23 = 3× 22 + 3× 2 + 1
43 − 33 = 3× 32 + 3× 3 + 1
· · · · · · · · ·

(n + 1)3 − n3 = 3× n2 + 3× n + 1
(n + 1)3 − 1 = 3× S2(n) + 3× S1(n) + S0(n)

(S3(n + 1)− S3(1))− S3(n) = 3× S2(n) + 3× S1(n) + S0(n)

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 14 / 23

Sums (cont.)

So, we have

(n + 1)3 − 1 = 3× S2(n) + 3× S1(n) + S0(n).

Given S0(n) and S1(n), the sum S2(n) can be computed by
straightforward algebra.

Recall that the left-hand side (n + 1)3 − 1 equals
(S3(n + 1)− S3(1))− S3(n), a result from “shifting and
canceling” terms of two sums.

This generalizes to Sk(n), for k > 2.

Similar shifting and canceling techniques apply to other kinds of
sums.

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 15 / 23

Sums (cont.)

So, we have

(n + 1)3 − 1 = 3× S2(n) + 3× S1(n) + S0(n).

Given S0(n) and S1(n), the sum S2(n) can be computed by
straightforward algebra.

Recall that the left-hand side (n + 1)3 − 1 equals
(S3(n + 1)− S3(1))− S3(n), a result from “shifting and
canceling” terms of two sums.

This generalizes to Sk(n), for k > 2.

Similar shifting and canceling techniques apply to other kinds of
sums.

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 15 / 23

Recurrence Relations

A recurrence relation is a way to define a function by an
expression involving the same function.

The Fibonacci numbers can be defined as follows: F (1) = 1
F (2) = 1
F (n) = F (n − 2) + F (n − 1)

We would need k − 2 steps to compute F (k).

It is more convenient to have an explicit (or closed-form)
expression.

To obtain the explicit expression is called solving the recurrence
relation.

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 16 / 23

Recurrence Relations

A recurrence relation is a way to define a function by an
expression involving the same function.

The Fibonacci numbers can be defined as follows: F (1) = 1
F (2) = 1
F (n) = F (n − 2) + F (n − 1)

We would need k − 2 steps to compute F (k).

It is more convenient to have an explicit (or closed-form)
expression.

To obtain the explicit expression is called solving the recurrence
relation.

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 16 / 23

Guessing and Proving an Upper Bound

Recurrence relation:

{
T (2) = 1
T (2n) ≤ 2T (n) + 2n − 1

Guess: T (n) = O(n log n).

Proof:

1. Base case: T (2) ≤ 2 log 2.
2. Inductive step: T (2n) ≤ 2T (n) + 2n − 1

≤ 2(n log n) + 2n − 1
= 2n log n + 2n log 2− 1
≤ 2n(log n + log 2)
= 2n log 2n

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 17 / 23

Guessing and Proving an Upper Bound

Recurrence relation:

{
T (2) = 1
T (2n) ≤ 2T (n) + 2n − 1

Guess: T (n) = O(n log n).

Proof:

1. Base case: T (2) ≤ 2 log 2.
2. Inductive step: T (2n) ≤ 2T (n) + 2n − 1

≤ 2(n log n) + 2n − 1
= 2n log n + 2n log 2− 1
≤ 2n(log n + log 2)
= 2n log 2n

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 17 / 23

Recurrent Relations with Full History

Example:

T (n) = c +
n−1∑
i=1

T (i),

where c is a constant and T (1) is given separately.

T (n)−T (n−1) = (c+
∑n−1

i=1 T (i))−(c+
∑n−2

i=1 T (i)) = T (n−1);
hence, T (n) = 2T (n − 1). (This holds only for n ≥ 3.)

So, we get {
T (2) = c + T (1)
T (n) = 2T (n − 1) if n ≥ 3

which is easier to solve.

Other examples as a reading assignment ...

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 18 / 23

Divide and Conquer Relations

The running time T (n) of a divide-and-conquer algorithm
satisfies

T (n) = aT (n/b) + cnk

where

a is the number of subproblems,
n/b is the size of each subproblem, and
cnk is the running time of the solutions-combining algorithm.

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 19 / 23

Divide and Conquer Relations (cont.)

Assume, for simplicity, n = bm (n
bm

= 1, n
bm−1 = b, etc.).

T (n) = aT (n
b

) + cnk

= a(aT (n
b2

) + c(n
b

)k) + cnk

= a(a(aT (n
b3

) + c(n
b2

)k) + c(n
b

)k) + cnk

· · ·
= a(a(· · · (aT (n

bm
) + c(n

bm−1)k) + · · ·) + c(n
b

)k) + cnk

Assuming T (1) = c ,

T (n) = c
m∑
i=0

am−ibik = cam
m∑
i=0

(
bk

a
)i .

Three cases: bk

a
< 1, bk

a
= 1, and bk

a
> 1.

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 20 / 23

Divide and Conquer Relations (cont.)

Theorem (3.4)

The solution of the recurrence relation T (n) = aT (n/b) + cnk ,
where a and b are integer constants, a ≥ 1, b ≥ 2, and c and k are
positive constants, is

T (n) =

O(nlogb a) if a > bk

O(nk log n) if a = bk

O(nk) if a < bk

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 21 / 23

Useful Facts

Harmonic series

Hn =
n∑

k=1

1

k
= ln n + γ + O(1/n),

where γ = 0.577 . . . is Euler’s constant.

Sum of logarithms∑n
i=1blog2 ic = (n + 1)blog2 nc − 2blog2 nc+1 + 2

= Θ(n log n).

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 22 / 23

Useful Facts (cont.)

Bounding a summation by an integral:
If f (x) is monotonically increasing, then

n∑
i=1

f (i) ≤
∫ n+1

1

f (x)dx .

If f (x) is monotonically decreasing, then

n∑
i=1

f (i) ≤ f (1) +

∫ n

1

f (x)dx .

Stirling’s approximation

n! =
√

2πn
(n
e

)n
(1 + O(1/n)).

Yih-Kuen Tsay (IM.NTU) Analysis of Algorithms Algorithms 2014 23 / 23

	Introduction
	The O Notation
	Speed of Growth
	Sums
	Recurrence Relations
	Divide and Conquer Relations
	Useful Facts

