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1 P vs. NP

P vs. NP

• P denotes the class of all problems that can be solved by deterministic algorithms in polynomial time.

• NP denotes the class of all problems that can be solved by nondeterministic algorithms in polynomial
time.

• A nondeterministic algorithm, when faced with a choice of several options, has the power to guess the
right one (if there is any).

• We will focus on decision problems, whose answer is either yes or no.

2 Polynomial-Time Reductions

Decision as Language Recognition

• A decision problem can be viewed as a language-recognition problem.

• Let U be the set of all possible inputs to the decision problem and L ⊆ U be the set of all inputs for
which the answer to the problem is yes.

• We call L the language corresponding to the problem.

• The decision problem is to recognize whether a given input belongs to L.

Polynomial-Time Reductions

• Let L1 and L2 be two languages from the input spaces U1 and U2.

• We say that L1 is polynomially reducible to L2 if there exists a conversion algorithm AC satisfying the
following conditions:

1. AC runs in polynomial time (deterministically).

2. u1 ∈ L1 if and only if AC(u1) = u2 ∈ L2.
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Polynomial-Time Reductions (cont.)

Theorem 1 (11.1). If L1 is polynomially reducible to L2 and there is a polynomial-time algorithm for L2,
then there is a polynomial-time algorithm for L1.

Theorem 2 (11.2: transitivity). If L1 is polynomially reducible to L2 and L2 is polynomially reducible to
L3, then L1 is polynomially reducible to L3.

3 NP-Completeness

NP-Completeness

• A problem X is called an NP-hard problem if every problem in NP is polynomially reducible to X.

• A problem X is called an NP-complete problem if (1) X belongs to NP, and (2) X is NP-hard.

Lemma 3 (11.3). A problem X is an NP-complete problem if (1) X belongs to NP , and (2′) Y is
polynomially reducible to X, for some NP-complete problem Y .

• If there exists an efficient (polynomial-time) algorithm for any NP-complete problem, then there exist
efficient algorithms for all NP-complete (and hence all NP) problems.

4 The SAT Problem

The Satisfiability Problem (SAT)

Problem 4. Given a Boolean expression in conjunctive normal form, determine whether it is satisfiable.

• A Boolean expression is in conjunctive normal form (CNF) if it is the product of several sums, e.g.,
(x + y + z̄) · (x̄ + y + z) · (x̄ + ȳ + z̄).

• A Boolean expression is said to be satisfiable if there exists an assignment of 0s and 1s to its variables
such that the value of the expression is 1.

SAT (cont.)

Theorem 5 (Cook’s Theorem). The SAT problem is NP-complete.

• This is our starting point for showing the NP-completeness of some other problems.

• Their NP-hardness will be proved by reduction directly or indirectly from SAT.
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NP-Complete Problems

Source: [Manber 1989].

5 Vertex Cover

Vertex Cover

Problem 6. Given an undirected graph G = (V,E) and an integer k, determine whether G has a vertex
cover containing ≤ k vertices.

A vertex cover of G is a set of vertices such that every edge in G is incident to at least one of these
vertices.

Theorem 7 (11.4). The vertex-cover problem is NP-complete.

By reduction from the clique problem.

6 Dominating Set

Dominating Set

Problem 8. Given an undirected graph G = (V,E) and an integer k, determine whether G has a dominating
set containing ≤ k vertices.

A dominating set D is a set of vertices such that every vertex of G is either in D or is adjacent to some
vertex in D.

Theorem 9 (11.5). The dominating-set problem is NP-complete.

By reduction from the vertex-cover problem.
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Dominating Set (cont.)

Source: [Manber 1989].

7 3SAT

3SAT

Problem 10. Given a Boolean expression in CNF such that each clause contains exactly three variables,
determine whether it is satisfiable.

Theorem 11 (11.6). The 3SAT problem is NP-complete.

By reduction from the regular SAT problem.

8 Clique

Clique

Problem 12. Given an undirected graph G = (V,E) and an integer k, determine whether G contains a
clique of size ≥ k.

A clique C is a subgraph of G such that all vertices in C are adjacent to all other vertices in C.

Theorem 13 (11.7). The clique problem is NP-complete.

By reduction from the SAT problem.
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Clique (cont.)

Source: [Manber 1989].

9 3-Coloring

3-Coloring

Problem 14. Given an undirected graph G = (V,E), determine whether G can be colored with three colors.

Theorem 15 (11.8). The 3-coloring problem is NP-complete.

By reduction from the 3SAT problem.

3-Coloring (cont.)

Source: [Manber 1989].
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3-Coloring (cont.)

Source: [Manber 1989].

3-Coloring (cont.)

Source: [Manber 1989].

10 More NP-Complete Problems

More NP-Complete Problems

• Independent set: An independent set in an undirected graph is a set of vertices no two of which
are adjacent. The problem is to determine, given a graph G and an integer k, whether G contains an
independent set with ≥ k vertices.

• Hamiltonian cycle: A Hamiltonian cycle in a graph is a (simple) cycle that contains each vertex
exactly once. The problem is to determine whether a given graph contains a Hamiltonian cycle.
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More NP-Complete Problems (cont.)

• Travelling salesman: The input includes a set of cities, the distances between all pairs of cities, and
a number D. The problem is to determine whether there exists a (travelling-salesman) tour of all the
cities having total length ≤ D.

• Partition: The input is a set X where each element x ∈ X has an associated size s(x). The problem
is to determine whether it is possible to partition the set into two subsets with exactly the same total
size.

More NP-Complete Problems (cont.)

• Knapsack: The input is a set X, where each element x ∈ X has an associated size s(x) and value
v(x), and two other numbers S and V . The problem is to determine whether there is a subset B ⊆ X
whose total size is ≤ S and whose total value is ≥ V .

• Bin packing: The input is a set of numbers {a1, a2, · · · , an} and two other numbers b and k. The
problem is to determine whether the set can be partition into k subsets such that the sum of numbers
in each subset is ≤ b.
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