Homework Assignment \#4

Note

This assignment is due $2: 10 \mathrm{PM}$ Tuesday, March 31, 2015. Please write or type your answers on A4 (or similar size) paper. Drop your homework by the due time in Yih-Kuen Tsay's mail box on the first floor of Management College Building II. Late submission will be penalized by 20% for each working day overdue. You may discuss the problems with others, but copying answers is strictly forbidden.

Problems

There are five problems in this assignment, each accounting for 20 points. (Note: problems marked with "(X.XX)" are taken from [Manber 1989] with probable adaptation.)

1. (5.3) Consider algorithm Mapping (see notes/slides). Is it possible that the set S will become empty at the end of the algorithm? Show an example, or prove that it cannot happen.
2. (5.8) In algorithm Knapsack, we first checked whether the i th item is unnecessary (by checking $P[i-1, j])$. If there is a solution with the $i-1$ items, we take this solution. We can also make the opposite choice, which is to take the solution with the i th item if it exists (i.e., check $P\left[i-1, j-k_{i}\right]$ first). Which version do you think will have a better performance? Redraw Fig. 5.11 (see notes/slides) to reflect this choice.
3. (5.17) The Knapsack Problem that we discussed in class is defined as follows: Given a set S of n items, where the i th item has an integer size $S[i]$, and an integer K, find a subset of the items whose sizes sum to exactly K or determine that no such subset exists.
We have described in class an algorithm to solve the problem. Modify the algorithm to solve a variation of the knapsack problem where each item has an unlimited supply. In your algorithm, please change the type of $P[i, k]$.belong into integer and use it to record the number of copies of item i needed.
4. (5.20) Let $x_{1}, x_{2}, \ldots, x_{n}$ be a set of integers, and let $S=\sum_{i=1}^{n} x_{i}$. Design an algorithm to partition the set into two subsets of equal sum, or determine that it is impossible to do so. The algorithm should run in time $O(n S)$.
5. (5.23) Write a non-recursive program (in suitable pseudocode) that prints the moves of the solution to the towers of Hanoi puzzle.
