
Algorithms [Compiled on May 10, 2016] Spring 2016

Suggested Solutions to Midterm Problems

1. Given a set of n + 1 numbers out of the first 2n (starting from 1) natural numbers 1, 2,
3, . . ., 2n, prove by induction that there are two numbers in the set, one of which divides
the other.

Solution. The proof is by induction on n.

Base case (n = 1): There is only one subset of 2 (= n + 1) numbers from {1, 2}, which is
the set {1, 2} itself. 1 divides 2.
Inductive step (n = k + 1 > 1): We need to show that any selection (subset) of k + 2
numbers from {1, 2, · · · , 2k, 2k+ 1, 2k+ 2} contains two numbers, one of which divides the
other. If the selection includes k + 1 numbers from {1, 2, · · · , 2k}, then by the induction
hypothesis we are done. Otherwise, the selection must contain both 2k + 1 and 2k + 2
and also include a selection S of other k numbers from {1, 2, · · · , 2k}.
Case one (k + 1 ∈ S): k + 1 divides 2k + 2.
Case two (k + 1 6∈ S): If S happens to contain two numbers one of which divides the
other, then we are done. Otherwise, from the induction hypothesis, S must contain a
number that divides k + 1. This is so, because (a) k + 1 does not divide any number in
{1, 2, · · · , 2k} and (b) S ∪ {k + 1} is a selection of k + 1 numbers from {1, 2, · · · , 2k} and
by the induction hypothesis must contain two numbers one of which divides the other.
The number that divides k + 1 also divides 2k + 2. 2

2. Prove by induction that the sum of the heights of all nodes in a complete binary tree with
n nodes is at most n− 1. You may assume it is known that the sum of the heights of all
nodes in a full binary tree of height h is 2h+1−h−2. (Note: a single-node tree has height
0.)

Solution. Let G(n) denote the sum of the heights of all nodes in a complete binary
tree with n nodes. For a full binary tree (a special case of complete binary trees) with
n = 2h+1 − 1 nodes where h is the height of the tree, we already know that G(n) =
2h+1 − (h + 2) = n− (h + 1) ≤ n− 1. With this as a basis, we prove the general case of
arbitrary complete binary trees by induction on the number n (≥ 1) of nodes.

Base case (n = 1 or n = 2): When n = 1, the tree is the smallest full binary tree with one
single node whose height is 0. So, G(n) = 0 ≤ 1 − 1 = n − 1. When n = 2, the tree has
one additional node as the left child of the root. The height of the root is 1, while that of
its left child is 0. So, G(n) = 1 ≤ 2− 1 = n− 1.

Inductive step (n > 2): If n happens to be equal to 2h+1 − 1 for some h ≥ 1, i.e., the tree
is full, then we are done; note that this covers the case of n = 3 = 21+1 − 1. Otherwise,
suppose 2h+1− 1 < n < 2h+2− 1 (h ≥ 1), i.e., the tree is a “proper” complete binary tree
with height h+ 1 ≥ 2. We observe that at least one of the two subtrees of the root is full,
while the other is complete (possibly full). There are three cases to consider:

Case 1: The left subtree is full with n1 nodes and the right one is complete but not full
with n2 nodes (such that n1 +n2 +1 = n). In this case, both subtrees much be of height h
and n1 = 2h+1−1. From the special case of full binary trees and the induction hypothesis,
G(n1) = 2h+1−(h+2) = n1−(h+1) and G(n2) ≤ n2−1. G(n) = G(n1)+G(n2)+(h+1) ≤
(n1 − (h + 1)) + (n2 − 1) + (h + 1) = (n1 + n2 + 1)− 2 ≤ n− 1.

1



Case 2: The left subtree is full with n1 nodes and the right one is also full with n2 nodes.
In this case, the left subtree much be of height h and n1 = 2h+1 − 1, while the right
subtree much be of height h − 1 and n2 = 2h − 1. ¿From the special case of full binary
trees, G(n1) = 2h+1 − (h + 2) = n1 − (h + 1) and G(n2) = 2h − (h + 1) = n2 − h. G(n) =
G(n1)+G(n2)+(h+1) ≤ (n1−(h+1))+(n2−h)+(h+1) = (n1+n2+1)−(h+1) ≤ n−1.

Case 3: The left subtree is complete but not full with n1 nodes and the right one is
full with n2 nodes. In this case, the left subtree much be of height h, while the right
subtree much be of height h − 1 and n2 = 2h − 1. ¿From the induction hypothesis and
the special case of full binary trees, G(n1) ≤ n1 − 1 and G(n2) = 2h − (h + 1) = n2 − h.
G(n) = G(n1)+G(n2)+(h+1) ≤ (n1−1)+(n2−h)+(h+1) = (n1 +n2 +1)−1 = n−1.
2

3. Consider bounding summations by integrals.

(a) If f(x) is monotonically increasing, then∫ n

0
f(x)dx ≤

n∑
i=1

f(i).

Show that this is indeed the case.

Solution. (Jing-Jie Lin)

This is easily seen by comparing the areas (on the R×R plane) defined by the formulae
on the two sides. As shown in the following diagram, the integral

∫ n
0 f(x)dx equals

the area under the curve that is shaded with thin parallel lines. The area is apparently
no larger than the total area of the vertical bars which represents

∑n
i=1 f(i).

0 1 2 3 n
x

f(x)

n-1

. . . 

2

(b) If f(x) is monotonically decreasing, then

n∑
i=1

f(i) ≤ f(1) +

∫ n

1
f(x)dx.

Show that this is indeed the case.

Solution. (Jing-Jie Lin)

Similar to the previous solution.

2



0 1 2 3 n
x

f(x)

. . . 

n-1

2

4. Consider a variant of the Knapsack Problem where we want the subset to be as large as
possible (i.e., to be with as many items as possible). How will you adapt the algorithm
(see the Appendix) that we have studied in class? Your algorithm should collect at the
end the items in one of the best solutions if they exist. Please present your algorithm in
adequate pseudocode and make assumptions wherever necessary (you may reuse the code
for the original Knapsack Problem). Give an analysis of its time complexity. The more
efficient your algorithm is, the more points you will get for this problem.

Solution. (Yi-Wen Chang)

To find the largest possible subset of items, we modify the Knapsack algorithm in the
Appendix to obtain Knapsack ForMaxSubset , as shown below. Each element P [i, k] in
the result array P now contains a new integer variable size which memorizes the size of
the current largest subset for k.

Algorithm Knapsack ForMaxSubset(S,K);
begin

P [0, 0].exist := true;
P [0, 0].size := 0;
for k := 1 to K do

P [0, k].exist := false;
P [0, k].size := 0;

for i := 1 to n do
for k := 0 to K do

P [i, k].exist := false;
P [i, k].size := 0;
if k − S[i] ≥ 0 and P [i− 1, k − S[i]].exist then

if P [i− 1, k].exist and P [i− 1, k].size ≥ P [i− 1, k − S[i]].size + 1 then
P [i, k].exist := true;
P [i, k].belong := false;
P [i, k].size := P [i− 1, k].size;

else
P [i, k].exist := true;
P [i, k].belong := true
P [i, k].size := P [i− 1, k − S[i]].size + 1;

3



else if P [i− 1, k].exist then
P [i, k].exist := true;
P [i, k].belong := false;
P [i, k].size := P [i− 1, k].size;

if ¬P [n,K].exist then
print “no solution”

else i := n;
k := K;
while k > 0 do

if P [i, k].belong then
print i;
k := k − S[i];

i := i− 1;
end

The complexity remains the same, which is O(nK). When a solution (a subset of items
whose sizes sum to exactly K) exists, the printed result will be the largest among such
subsets. 2

5. Show all intermediate and the final AVL trees formed by inserting the numbers 7, 5, 2, 1,
4, 3, and 6 (in this order) into an empty tree. Please use the following ordering convention:
the key of an internal node is larger than that of its left child and smaller than that of
its right child. If re-balancing operations are performed, please also show the tree before
re-balancing and indicate what type of rotation is used in the re-balancing.

Solution.

Insert 7:
7

Insert 5:

7

5
Insert 2:

7

5

2

Single rotation at 7:

5

72
Insert 1:

5

72

1

Insert 4:

5

72

41
Insert 3:

5

72

4

3

1

4



Double rotation at 5:

4

5

7

2

31

Insert 6:

4

5

7

6

2

31

Double rotation at 5:

4

6

75

2

31

2

6. Below is the Mergesort algorithm in pseudocode:

Algorithm Mergesort (X,n);
begin M Sort(1, n) end

procedure M Sort (Left,Right);
begin

if Right− Left = 1 then
if X[Left] > X[Right] then swap(X[Left], X[Right])

else if Left 6= Right then
Middle := d12(Left + Right)e;
M Sort(Left,Middle− 1);
M Sort(Middle,Right);
// the merge part
i := Left; j := Middle; k := 0;
while (i ≤Middle− 1) and (j ≤ Right) do

k := k + 1;
if X[i] ≤ X[j] then

TEMP [k] := X[i]; i := i + 1
else TEMP [k] := X[j]; j := j + 1;

if j > Right then
for t := 0 to Middle− 1− i do

X[Right− t] := X[Middle− 1− t]
for t := 0 to k − 1 do

X[Left + t] := TEMP [t]
end

5



Given the array below as input, what are the contents of array TEMP after the merge
part is executed for the first time and what are the contents of TEMP when the algorithm
terminates? Assume that each entry of TEMP has been initialized to 0 when the algorithm
starts.

1 2 3 4 5 6 7 8 9 10 11 12

9 10 4 6 11 7 8 2 1 12 3 5

Solution.

The contents of array TEMP after the merge part is executed for the first time:

1 2 3 4 5 6 7 8 9 10 11 12

4 9 0 0 0 0 0 0 0 0 0 0

The contents of array TEMP when the algorithm terminates:

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 0 2

7. The partition procedure in the Quicksort algorithm chooses an element as the pivot and
divide the input array A[1..n] into two parts such that, when the pivot is properly placed in
A[i], the entries in A[1..(i−1)] are less than or equal to A[i] and the entries in A[(i+1)..n]
are greater than or equal to A[i]. Please design an extension of the partition procedure so
that it chooses two pivots and divides the input array into three parts. Assuming the two
pivots are eventually placed in A[i] and A[j] (i < j) respectively, the entries in A[1..(i−1)]
are less than or equal to A[i], the entries in A[(i + 1)..(j − 1)] are greater than or equal
to A[i] and less than or equal to A[j], and the entries in A[(j + 1)..n] are greater than or
equal to A[j].

Please present your extension in adequate pseudocode and make assumptions wherever
necessary. Give an analysis of its time complexity. The more efficient your algorithm is,
the more points you will be credited for this problem.

Solution.

Partition3(X, Left, Right);

begin

if X[Left] > X[Right] then swap(X[Left], X[Right]);

pivot1 := X[Left];

pivot2 := X[Right];

i := Left;

k := Right;

for j := Left+1 to Right-1 do

if X[j] < pivot1 then

i := i + 1;

swap(X[i], X[j]);

else

if X[j] > pivot2 then

k := k - 1;

swap(X[j], X[k]);

if X[j] < pivot1 then

i := i + 1;

swap(X[i], X[j]);

6



swap(X[Left], X[i]);

swap(X[Right], X[k]);

end

The algorithm contains one simple for-loop, with each iteration taking a constant amount
of time, and hence is clearly linear-time. 2

8. Consider rearranging the following array into a max heap using the bottom-up approach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5 3 7 2 1 9 15 6 4 11 10 12 13 14 8

Please show the result (i.e., the contents of the array) after a new element is added to the
current collection of heaps (at the bottom) until the entire array has become a heap.

Solution.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5 3 7 2 1 9 15 6 4 11 10 12 13 14 8

5 3 7 2 1 9 15 6 4 11 10 12 13 14 8

5 3 7 2 1 13 15 6 4 11 10 12 9 14 8

5 3 7 2 11 13 15 6 4 1 10 12 9 14 8

5 3 7 6 11 13 15 2 4 1 10 12 9 14 8

5 3 15 6 11 13 14 2 4 1 10 12 9 7 8

5 11 15 6 10 13 14 2 4 1 3 12 9 7 8

15 11 14 6 10 13 8 2 4 1 3 12 9 7 5

2

9. Your task is to design an in-place algorithm that sorts an array of numbers according to
a prescribed order. The input is a sequence of n numbers x1, x2, · · ·, xn and another
sequence a1, a2, · · ·, an of n distinct numbers between 1 and n (i.e., a1, a2, · · ·, an is a
permutation of 1, 2, · · ·, n), both represented as arrays. Your algorithm should sort the
first sequence according to the order imposed by the permutation as prescribed by the
second sequence. For each i, xi should appear in position ai in the output array. As an
example, if x = 23, 9, 5, 17 and a = 4, 1, 3, 2, then the output should be x = 9, 17, 5, 23.

Please describe your algorithm as clearly as possible; it is not necessary to give the pseu-
docode. Remember that the algorithm must be in-place, without using any additional
storage for the numbers to be sorted. Give an analysis of its time complexity. The more
efficient your algorithm is, the more points you will get for this problem.

Solution. Suppose that array X holds the first sequence and array A the second. Sort A
increasingly according to the position values that it stores. Every time when two elements
in A, say ai and aj , are swapped, we also swap the corresponding elements in X, i.e., xi
and xj . Once the sorting of A is completed, the elements in X are also sorted as prescribed
by A. Any in-place sorting algorithm may be used for sorting A. If we use Heapsort, the
complexity is O(n log n).

In fact, there is a much simpler and faster (linear-time) algorithm. In this algorithm, we
scan array A form left to right. Whenever A[i] 6= i, we swap xi and xA[i] and also A[i] and
A[A[i]]. This is repeated until A[i] = i and we then proceed to the next element in array
A. Each swap of xi and xA[i] brings one element in X to its final destination. So, we ever
need to do such swaps at most n times and the check of whether A[i] = i (1 ≤ i ≤ n)
is done at most 2n times in total. The corresponding swaps for A are also performed at
most n times. Therefore, this algorithm runs in O(n) time. 2

7



10. Below is a variant of the bubble sort algorithm in pseudocode.

Algorithm Bubble Sort (A,n);
begin

for i := 1 to n− 1 do
for j := 1 to n− i do

if A[j] > A[j + 1] then
swap(A[j], A[j + 1]);

end for
end for

end

Draw a decision tree of the algorithm for the case of A[1..3], i.e., n = 3. In the decision
tree, you must indicate (1) which two elements of the original input array are compared
in each internal node and (2) the sorting result in each leaf. Please use X1, X2, X3 (not
A[1], A[2], A[3]) to refer to the elements (in this order) of the original input array.

Solution.

X1 : X2

X1 : X3

X2 : X3

X3X2X1X2X3X1

X2 : X1

X1X2X3X2X1X3

X2 : X3

X1 : X3

X3X1X2X1X3X2

X1 : X2

X2X1X3X1X2X3

≤ >

Note: two leaves (2nd and 6th from the left) contain impossible outcomes and the corre-
sponding decisions are not necessary. However, the algorithm makes them anyway, which
shows the inefficiency of the algorithm. 2

Appendix

• The solution of the recurrence relation T (n) = aT (n/b) + cnk, where a and b are integer
constants, a ≥ 1, b ≥ 2, and c and k are positive constants, is as follows.

T (n) =


O(nlogb a) if a > bk

O(nk log n) if a = bk

O(nk) if a < bk

• Below is an algorithm for determining whether a solution to the Knapsack Problem exists.
It does not attempt to maximize the number of items in the solution.

Algorithm Knapsack (S,K);
begin

P [0, 0].exist := true;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

8



for k := 0 to K do
P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := false

else if k − S[i] ≥ 0 then
if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := true

end

• Below is an alternative algorithm for partition in the Quicksort algorithm:

Partition (X,Left ,Right);
begin

pivot := X[left ];
i := Left ;
for j := Left + 1 to Right do

if X[j] < pivot then i := i + 1;
swap(X[i], X[j]);

Middle := i;
swap(X[Left ], X[Middle])

end

9


