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1 Introductin

Introduction
e The basic idea of reduction is to solve a problem with the solution to another “similar” problem.
e When Problem A can be reduced to Problem B, there are two consequences:

— A solution to Problem B may be used to solve Problem A.

— If A is known to be “hard”, then B is also necessarily “hard”.

e One should avoid the pitfall of reducing a problem to another that is too general or too hard.

2 Bipartite Matching

Matching

e Given an undirected graph G = (V, E), a matching is a set of edges that do not share a common
vertex.

e A maximum matching is one with the maximum number of edges.

e A maximal matching is one that cannot be extended by adding any other edge.

Bipartite Matching

e A bipartite graph G = (V, E,U) is a graph with V U U as the set of vertices and E as the set of edges
such that

— V and U are disjoint and

— The edges in E connect vertices from V' to vertices in U.

Problem 1. Given a bipartite graph G = (V, E,U), find a mazimum matching in G.

3 Network Flows

Networks

e Consider a directed graph, or network, G = (V, E) with two distinguished vertices: s (the source) with
indegree 0 and ¢ (the sink) with outdegree 0.

e Each edge e in F has an associated positive weight c(e), called the capacity of e.



The Network Flow Problem

e A flow is a function f on E that satisfies the following two conditions:
1. 0 < f(e) < c(e).
2. Zf(u,v) = Zf(v,w), forallv e V —{s,t}.
u w

e The network flow problem is to maximize the flow f for a given network G.

4 Bipartite Matching to Network Flow

Bipartite Matching to Network Flow

Figure 7.39 Reducing bipartite matching to network flow (the directions of all the
edges are from left to right).

Source: [Manber 1989].

Bipartite Matching to Network Flow (cont.)

e Mapping from the input G = (V, E,U) of the bipartite matching problem to the input G' = (V' E’)
and c of the network flow problem:
— The network is G’ = (V/, E’") where
* V' ={s}uVUuUUU/{¢t}
x B ={(s,v) |[veVIUEU{(u,t) |ueU}
— The capacity for every e € E' is 1, i.e., Ve € E' ¢(e) = 1.

e Correspondence between the two solutions

— A maximum flow f in G’ defines a maximum matching M/ in G.

— A maximum matching M in G induces a maximum flow fj; in G'.



5 Linear Programming
Notations

e Let T denote a vector (v1,ve,...,v,) of n constants or n variables.
e In the following, @, b, ¢, and € are vectors of n constants.
e And, T and 7 are vectors of n variables.

e The (inner or dot) product @ - T of two vectors @ and T is defined as follows:
n
a-xr = Z a; - x;
i=1

Linear Programming

e Objective function:

c-T
e Equality constraints:
€1 dy
€2 da
T = .
€m dm

e Inequality constraints may be turned into equality constraints by introducing slack variables.

e The goal is to mazimize (or minimize) the value of the objective function, subject to the equality
constraints.

6 Network Flow to Linear Programming
Network Flow to Linear Programming

e Mapping from the input G = (V, E) and ¢ of the network flow problem to the objective function and
constraints of linear programming;:

— Let z1, 29, ...,x, represent the flow of the n edges.
— Objective function
>
€S

where S is the set of edges leaving the source.

— Inequality constraints
r; <c¢, foralli,1 <i<n

where ¢; is the capacity of edge 1.

— Equality constraints

Z € — Z z; =0, for every v € V '\ {s,}

i leaves v J enters v



