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Introduction

The basic idea of reduction is to solve a problem with the
solution to another “similar” problem.
When Problem A can be reduced to Problem B, there are two
consequences:

A solution to Problem B may be used to solve Problem A.

If Ais known to be “hard”, then B is also necessarily “hard”.
One should avoid the pitfall of reducing a problem to another
that is too general or too hard.
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Matching

Given an undirected graph G = (V, E), a matching is a set of
edges that do not share a common vertex.

A maximum matching is one with the maximum number of
edges.

A maximal matching is one that cannot be extended by adding
any other edge.
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Bipartite Matching

A bipartite graph G = (V, E, U) is a graph with V U U as the
set of vertices and E as the set of edges such that

V and U are disjoint and
The edges in E connect vertices from V to vertices in U.

Problem

Given a bipartite graph G = (V, E, U), find a maximum matching in
G.
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Networks

Consider a directed graph, or network, G = (V, E) with two
distinguished vertices: s (the source) with indegree 0 and t (the
sink) with outdegree 0.

Each edge e in E has an associated positive weight c(e), called
the capacity of e.
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The Network Flow Problem

A flow is a function f on E that satisfies the following two
conditions:

1. 0 < f(e) < c(e).
2. Zf(uv:z v,w), for all v e V — {s, t}.

The network flow problem is to maximize the flow f for a
given network G.

Yih-Kuen Tsay (IM.NTU) Reduction Algorithms 2016 6 /11



Figure 7.39 Reducing bipartite matching to network flow (the directions of all the

edges are from left to right).

Source: [Manber 1989].
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Bipartite Matching to Network Flow (cont.)

Mapping from the input G = (V, E, U) of the bipartite
matching problem to the input G’ = (V’, E’) and ¢ of the
network flow problem:
The network is G’ = (V' E’) where
w V' ={stuVuUut}
w E'={(s,v)|ve VIUEU{(u,t) | ue U}
The capacity for every e € E' is 1, i.e., Ve € E', c(e) = 1.
Correspondence between the two solutions
A maximum flow f in G’ defines a maximum matching M¢ in G.
A maximum matching M in G induces a maximum flow fy in
G'.
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Notations

Let v denote a vector (vi, va,...,v,) of n constants or n
variables.
In the following, &, b, ¢, and € are vectors of n constants.

And, X and y are vectors of n variables.
The (inner or dot) product 3- X of two vectors 2 and X is defined

as follows:
n
a-xX= E a; - Xj
i=1
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Linear Programming

Objective function:

c-X
Equality constraints:
51 dl
€ | _ do
X = _
€m dm

Inequality constraints may be turned into equality constraints by
introducing slack variables.

The goal is to maximize (or minimize) the value of the objective
function, subject to the equality constraints.
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Network Flow to Linear Programming

Mapping from the input G = (V, E) and c of the network flow
problem to the objective function and constraints of linear
programming:
Let x1, X2, ..., X, represent the flow of the n edges.
Objective function
D> _x

i€eS
where S is the set of edges leaving the source.
Inequality constraints

xi < ¢, forall i,1<i<n

where ¢; is the capacity of edge i.
Equality constraints

Z Xj — Z xj =0, for every v e V' \ {s, t}

i leaves v j enters v
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