
Algorithms [Compiled on June 6, 2016] Spring 2016

Appendix to Chapter 11 of [Manber]:
An NP-Completeness Proof

This note concerns the NP-completeness proof of the dominating set problem in Manber’s book.

The main purpose is to make clearer certain conditions that are omitted or implicitly assumed

in the book. With the proof as an example, we also wish to clarify how the definition of

polynomial-time reduction is followed in a typical NP-completeness proof. We start with the

problem statement; other related definitions are appended at the end of this note.

The Dominating Set Problem: Given an undirected graph G = (V,E) and an integer k,

determine whether G has a dominating set containing ≤ k vertices. (A dominating set D of G

is a subset of V such that every vertex of G is either in D or is adjacent to some vertex in D.)

Theorem. The dominating set problem is NP-complete.

Proof. The problem is obviously in NP, as we can guess a set of vertices and check in polynomial

time whether the set is of size ≤ k and is indeed a dominating set of the given graph G. To prove

that it is NP-hard, we demonstrate a polynomial-time reduction from the vertex-cover problem,

which is known to be NP-hard. An input (G1 = (V1, E1), k1), which is a pair of a graph and

an integer, to the vertex cover problem can be converted to an input (G2 = (V2, E2), k2) to the

dominating set problem in the following manner:

To obtain G2, we first remove all isolated vertices (which are not connected to any other vertex)

from V1. We then add, for each edge {u, v} in E, a vertex uv and two edges {u, uv} and {uv, v}.
In other words, we transform every edge into a triangle. Finally, we make k2 simply equal to

k1. This conversion apparently can be done by a deterministic algorithm in polynomial time.

We need to show that G1 has a vertex cover of size ≤ k1 if and only if G2 has a dominating

set of size ≤ k2. But before doing so, we deviate to make a contrast with the definition of

polynomial-time reduction (which can be found in the appendix). The input spaces Uvc and

Uds of the two problems are the same, namely the set of all possible pairs of a graph and an

integer. The language Lvc of the vertex cover problem is the set of all (G, k) such that G has a

vertex cover of size ≤ k, while the language Lds of the dominating set problem is the set of all

(G, k) such that G has a dominating set of size ≤ k. The proof obligation “G1 has a vertex cover

of size ≤ k1 if and only if G2 has a dominating set of size ≤ k2” is derived from the statement

“(G1, k1) ∈ Lvc iff (G2, k2) ∈ Lds”. (End of Deviation)

The “only if” part: Suppose G1 has a vertex cover C of size ≤ k1. Remove all isolated vertices

in C to obtain another vertex cover C ′ of G1 (isolated vertices are not usual for covering an

edge). C ′ is also a subset of V2 and |C ′| ≤ |C| ≤ k1 = k2. We claim that C ′ is a dominating

set of G2. Every vertex u in V2 that comes from V1 is an end vertex of some edge {u, v} ∈ E1.

Since {u, v} is covered by C ′, either u or v must be in C ′, implying that u is dominated by C ′,

1

i.e., u is either in C ′ or adjacent to some vertex (namely v) in C ′. Every new vertex uv that

was added for edge {u, v} is adjacent to both u and v and is also dominated, as again one of u

and v must be in C ′.

The “if” part: Suppose G2 has a dominating set D of size ≤ k2. D may not be a subset of V1,

as D may contain vertices that were added in the conversion. Replace every vertex uv in D,

which was added for edge {u, v}, by either u or v to obtain a new set D′. Since every replaced

vertex is adjacent to the replacing vertex, D′ remains a dominating set of G2. D′ is a subset

of V1 and |D′| ≤ |D| ≤ k2 = k1 (|D′| is not necessarily equal to |D|). We claim that D′ is also

a vertex cover of G1. For every edge {u, v} in E1, either u or v is in D′; otherwise, the added

vertex uv in V2 corresponding to {u, v} would not be dominated by D′. Therefore, every edge

of G1 is covered by D′. 2

Appendix

The Vertex Cover Problem: Given an undirected graph G = (V,E) and an integer k,

determine whether G has a vertex cover containing ≤ k vertices. (A vertex cover C of G is a

subset of V such that every edge in G is incident to at least one vertex in C.)

Polynomial-Time Reduction: Let L1 and L2 be two languages from the input spaces U1 and

U2. We say that L1 is polynomially reducible to L2 if there exists a polynomial-time algorithm

that converts each input u1 ∈ U1 to another input u2 ∈ U2 such that u1 ∈ L1 if and only if

u2 ∈ L2.

2

