Algorithms 2016: Mathematical Induction

(Based on [Manber 1989])

Yih-Kuen Tsay

1 Induction Principles
The Standard Induction Principle

e Let T be a theorem that includes a parameter n whose value can be any natural number.

e Here, natural numbers are positive integers, i.e., 1, 2, 3, ..., excluding 0 (sometimes we may include
0).

e To prove T, it suffices to prove the following two conditions:

— T holds for n = 1. (Base case)
— For every n > 1, if T holds for n — 1, then T holds for n. (Inductive step)

e The assumption in the inductive step that 7" holds for n — 1 is called the induction hypothesis.

A Starter
Theorem 1 (2.1). For all natural numbers x and n, ™ — 1 is divisible by x — 1.

Proof. (Suggestion: try to follow the structure of this proof when you present a proof by induction.)

The proof is by induction on n.

Base case (n = 1): — 1 is trivially divisible by — 1.

Inductive step (n > 1): 2® —1=z(z" ! — 1)+ (x — 1). 2"~ ! — 1 is divisible by # — 1 from the induction
hypothesis and x — 1 is divisible by x — 1. Hence, ™ — 1 is divisible by « — 1. O

Note: a is divisible by b if there exists an integer ¢ such that a = b x c.

Variants of Induction Principle

Theorem 2. If a statement P, with a parameter n, is true for n = 1, and if, for every n > 1, the truth of
P for n implies its truth for n+ 1, then P is true for all natural numbers.

Theorem 3 (Strong Induction). If a statement P, with a parameter n, is true for n =1, and if, for every
n > 1, the truth of P for all natural numbers < n implies its truth for n, then P is true for all natural
numbers.

Theorem 4. If a statement P, with a parameter n, is true for n = 1 and for n = 2, and if, for everyn > 2,
the truth of P for n — 2 implies its truth for n, then P is true for all natural numbers.

2 Design by Induction

Design by Induction: First Glimpse

Problem 5. Given two sorted arrays A[l..m] and B[l..n] of positive integers, find their smallest common
element; returns 0 if no common element is found.

Assume the elements of each array are in ascending order.

Obvious solution: take one element at a time from A and find out if it is also in B (or the other way
around).

How efficient is this solution?

Can we do better?

Design by Induction: First Glimpse (cont.)
e There are m + n elements to begin with.

e Can we pick out one element such that either (1) it is the element we look for or (2) it can be ruled
out from subsequent searches?

e In the second case, we are left with the same problem but with m 4+ n — 1 elements?
e Idea: compare the current first elements of A and B.

1. If they are equal, then we are done.

2. If not, the smaller one cannot be the smallest common element.

Design by Induction: First Glimpse (cont.)
Below is the complete solution:

Algorithm SCE(A,m, B, n) : integer;
begin

if m=0orn=0 then SCFE :=0;

if A[1] = B[1] then

SCE = A[l];
else if A[1] < B[1] then
SCE := SCE(A[2..m],m — 1, B,n);

else SCE := SCE(A,m, B[2..n],n — 1);

end

Why Induction Works

e Computations carried out by a computer/machine can, in essence, be understood as mathematical
functions.

e To solve practical problems with computers,

— objects/things in a practical domain must be modeled as (mostly discrete) mathematical struc-
tures/sets, and

— various manipulations of the objects become functions on the corresponding mathematical struc-
tures.

e Many mathematical structures are naturally defined by induction.

e Functions on inductive structures are also naturally defined by induction (recursion).

Recursively /Inductively-Defined Sets

e The natural numbers (including 0):

1. Base case: 0 is a natural number.

2. Inductive step: if n is a natural number, then n + 1 is also a natural number.
e Binary trees:

1. Base case: the empty tree is a binary tree.

2. Inductive step: if L and R are binary trees, then a node with L and R as the left and the right
children is also a binary tree.

e Nonempty binary trees:

1. Base case: a single root node (without any child) is a binary tree.

2. Inductive step: if L and R are binary trees, then a node with L as the left child and/or R as the
right child is also a binary tree.

Structural Induction

e Structural induction is a generalization of mathematical induction on the natural numbers.

e It is used to prove that some proposition P(x) holds for all x of some sort of recursively/inductively
defined structure such as binary trees.

e Proof by structural induction:

1. Base case: the proposition holds for all the minimal structures.

2. Inductive step: if the proposition holds for the immediate substructures of a certain structure S,
then it also holds for S.

3 Proofs by Induction

Another Simple Example

Theorem 6 (2.4). If n is a natural number and 1+ x > 0, then (1 4+ x)" > 1+ na.

e Below are the key steps:

(I+az)"*t = (1+a)(1+a)"
{induction hypothesis and 1+ z > 0}
> (1+z)(1+ nx)
=1+ (n+ 1)z + na?
>1+(n+1)x

e The main point here is that we should be clear about how conditions listed in the theorem are used.

3.1 Proving vs. Computing

Proving vs. Computing
Theorem 7 (2.2). 1+2+---+n= w

e This can be easily proven by induction.

e Key steps: 1 +2+---+n+(n+1) = 7"(";1) +(n+1) = ”2+"J2FQ"+2 = "2+g"+2 =

(ntD)(nt2) _
I —

(n+1)((n+1)+1)
I E——

Induction seems to be useful only if we already know the sum.

e What if we are asked to compute the sum of a series?

Let’s try 8 + 134+ 18 + 23 + - - - 4+ (3 + 5n).

Proving vs. Computing (cont.)

e Idea: guess and then verify by an inductive proof!

e The sum should be of the form an? + bn + c.

e By checking n =1, 2, and 3, we get gnZ + 1—2171

e Verify this for all n, i.e., the following theorem, by induction.

Theorem 8 (2.3). 8+ 13+ 18+ 23+ -+ (34 5n) = 3n? + Lin.

3.2 Counting Regions

Counting Regions

the nth line

‘fhe (n+1)th line

Figure 2.1 »n+1 lines in general position.

Source: [Manber 1989].

Counting Regions (cont.)
Theorem 9 (2.5). The number of regions in the plane formed by n lines in general position is w + 1.

A set of lines are in general position if (1) no two lines are parallel and (2) no three lines intersect at
a common point.

e We observe that w =142+ 4n.
e So, it suffices to prove the following;:

Lemma 10. Adding one more line (the n-th line) to n — 1 lines in general position in the plane increases
the number of regions by n.

3.3 A Summation Problem

A Summation Problem

1 = 1

3+5 = 8
7T+94+11 = 27
13+15+17+19 = 64

214+23+25+27+29

125

Theorem 11. The sum of row n in the triangle is n>.

Examine the difference between rows ¢ + 1 and 7 ...
Lemma 12. The last number in row n + 1 is n® + 3n + 1.
A Simple Inequality
Theorem 13 (2.7). 3+ 5+ 41+ + 5= <1, for alln > 1.
e There are at least two ways to select n terms from n + 1 terms.
L G+3+3+ -+ %)+ 7=
2. 3+ (G+5+ -+ 3+)

e The second one leads to a successful inductive proof:

1HGH it)
= brid i)
< 143
=1

3.4 Euler’s Formula

FEuler’s Formula

Figure 2.2 A planar map with 11 vertices, 19 edges, and 10 faces.

Source: [Manber 1989].

Euler’s Formula (cont.)

Theorem 14 (2.8). The number of vertices (V), edges (E), and faces (F) in an arbitrary connected planar
graph are related by the formula V + F = E + 2.

The proof is by induction on the number of faces.
Base case: graphs with only one face are trees ...

Lemma 15. A tree with n vertices has n — 1 edges.

Inductive step: for a graph with more than one faces, there must be a cycle in the graph. Remove one
edge from the cyle ...

3.5 Gray Codes
Gray Codes

e A Gray code (after Frank Gray) for n objects is a binary-encoding scheme for naming the n objects
such that the n names can be arranged in a list where

e Examples:
— 00, 01, 11, 10
— 000, 001, 011, 010, 110, 111, 101, 100
— 000, 001, 011, 111, 101, 100

A Gray Code in Picture

A rotary encoder using a 3-bit Gray code.
Source: Wikipedia.

Gray Codes (cont.)
. k . .
Theorem 16 (2.10). There exist Gray codes of length 5 for any positive even integer k.

Figure 2.3 Constructing a Gray code of size 2k
Source: [Manber 1989] (adapted).
Note: j in the figure equals 2(k — 1) and hence j + 2 equals 2k.
Gray Codes (cont.)

Theorem 17 (2.10+). There exist Gray codes of length logy k for any positive integer k that is a power of
2.

Figure 2.4 Constructing a Gray code from two smaller ones

Source: [Manber 1989] (adapted).

Gray Codes (cont.)
e 00, 01, 11, 10 (for 22 objects)
e 000, 001, 011, 010 (add a 0)
e 100, 101, 111, 110 (add a 1)

e Combine the preceding two codes (read the second in reversed order): 000, 001, 011, 010, 110, 111,
101, 100 (for 23 objects)

Gray Codes (cont.)

Theorem 18 (2.11—). There exist Gray codes of length [log, k| for any positive even integer k.

To generalize the result and ease the proof, we allow a Gray code to be open where the last name and
the first name may differ by more than one bit.

Theorem 19 (2.11). There exist Gray codes of length [logy k] for any positive integer k > 2. The Gray
codes for the even values of k are closed, and the Gray codes for values of k are

Gray Codes (cont.)
e 00, 01, 11 (open Gray code for 3 objects)
e 000, 001, 011 (add a 0)
e 100, 101, 111 (add a 1)

e Combine the preceding two codes (read the second in reversed order): 000, 001, 011, 111, 101, 100
(closed Gray code for 6 objects)

Gray Codes (cont.)

Figure 2.5 Constructing an open Gray code

Source: [Manber 1989] (adapted).

4 Reversed Induction

Arithmetic vs. Geometric Mean

Theorem 20 (2.13). If z1,22,...,x, are all positive numbers, then (x1xs - - ~xn)% < Titrat o F T)
n

First use the standard induction to prove the case of powers of 2 and then use the reversed induction
principle below to prove for all natural numbers.

Theorem 21 (Reversed Induction Principle). If a statement P, with a parameter n, is true for an infinite
subset of the natural numbers, and if, for every n > 1, the truth of P for n implies its truth for n — 1, then
P is true for all natural numbers.

Arithmetic vs. Geometric Mean (cont.)
e For all powers of 2, i.e., n = 2%, k > 1: by induction on k.
e Base case: (1’1.%2)% < %, squaring both sides

e Inductive step:

(.1‘1372 s .’L‘2k+1)ﬁ
= [(w1@2- Taesn)]
= [(m122- "sz)ﬁ(fﬂzulxzkw : "1’2k+1)i]%

B 1
(T122255) 2F +(Tok 1 Toh g o Toht1) 28

< 3 , from the base case
ml+m2+};.-+l‘2k +”‘2k+1+”’2k+f+“‘+l’2k+l

< 2 5 2 , from the Ind. Hypo.

_ Titmet+Tokt1

- ok+1

Arithmetic vs. Geometric Mean (cont.)
e For all natural numbers: by reversed induction on n.
e Base case: the theorem holds for all powers of 2.
e Inductive step: observe that

T1txat+ - +Tp_1
n—1

i+t 4z T1tH T2+ Tt

n—1 n

Arithmetic vs. Geometric Mean (cont.)

R R T |
T1txot-trp_1))% Tyt ttr, 1

n—1

(21711’2 cee lin—l(

— n

(from the Ind. Hypo.)

(1a - g (L)) < (R
(122 waor) < (PR
O N S =

5 Loop Invariants
Loop Invariants

e An invariant at some point of a program is an assertion that holds whenever execution of the program
reaches that point.

e Invariants are a bridge between the of a program and its
e An invariant at the front of a while loop is called a loop invariant of the while loop.
e A loop invariant is formally established by induction.

— Base case: the assertion holds right before the loop starts.

— Inductive step: assuming the assertion holds before the i-th iteration (¢ > 1), it holds again after
the iteration.

Number Conversion

Algorithm Convert_to_Binary(n);

begin
t:=mn;
k= 0;
while ¢ > 0 do
k:=k+1;
blk] := t mod 2;
t:=t div 2;
end

Number Conversion (cont.)

Theorem 22 (2.14). When Algorithm Convert_to_Binary terminates, the binary representation of n is stored
in the array b.

Lemma 23. If m is the integer represented by the binary array b[1..k], then n = t-2% +m is a loop invariant
of the while loop.

See separate handout for a detailed proof.

10

