
Algorithms 2016: Mathematical Induction

(Based on [Manber 1989])

Yih-Kuen Tsay

1 Induction Principles

The Standard Induction Principle

• Let T be a theorem that includes a parameter n whose value can be any natural number.

• Here, natural numbers are positive integers, i.e., 1, 2, 3, . . ., excluding 0 (sometimes we may include
0).

• To prove T , it suffices to prove the following two conditions:

– T holds for n = 1. (Base case)

– For every n > 1, if T holds for n− 1, then T holds for n. (Inductive step)

• The assumption in the inductive step that T holds for n− 1 is called the induction hypothesis.

A Starter

Theorem 1 (2.1). For all natural numbers x and n, xn − 1 is divisible by x− 1.

Proof. (Suggestion: try to follow the structure of this proof when you present a proof by induction.)
The proof is by induction on n.
Base case (n = 1): x− 1 is trivially divisible by x− 1.
Inductive step (n > 1): xn − 1 = x(xn−1 − 1) + (x− 1). xn−1 − 1 is divisible by x− 1 from the induction

hypothesis and x− 1 is divisible by x− 1. Hence, xn − 1 is divisible by x− 1.

Note: a is divisible by b if there exists an integer c such that a = b× c.

Variants of Induction Principle

Theorem 2. If a statement P , with a parameter n, is true for n = 1, and if, for every n ≥ 1, the truth of
P for n implies its truth for n + 1, then P is true for all natural numbers.

Theorem 3 (Strong Induction). If a statement P , with a parameter n, is true for n = 1, and if, for every
n > 1, the truth of P for all natural numbers < n implies its truth for n, then P is true for all natural
numbers.

Theorem 4. If a statement P , with a parameter n, is true for n = 1 and for n = 2, and if, for every n > 2,
the truth of P for n− 2 implies its truth for n, then P is true for all natural numbers.

1

2 Design by Induction

Design by Induction: First Glimpse

Problem 5. Given two sorted arrays A[1..m] and B[1..n] of positive integers, find their smallest common
element; returns 0 if no common element is found.

• Assume the elements of each array are in ascending order.

• Obvious solution: take one element at a time from A and find out if it is also in B (or the other way
around).

• How efficient is this solution?

• Can we do better?

Design by Induction: First Glimpse (cont.)

• There are m + n elements to begin with.

• Can we pick out one element such that either (1) it is the element we look for or (2) it can be ruled
out from subsequent searches?

• In the second case, we are left with the same problem but with m + n− 1 elements?

• Idea: compare the current first elements of A and B.

1. If they are equal, then we are done.

2. If not, the smaller one cannot be the smallest common element.

Design by Induction: First Glimpse (cont.)
Below is the complete solution:

Algorithm SCE(A,m,B, n) : integer;
begin

if m = 0 or n = 0 then SCE := 0;
if A[1] = B[1] then

SCE := A[1];
else if A[1] < B[1] then

SCE := SCE(A[2..m],m− 1, B, n);
else SCE := SCE(A,m,B[2..n], n− 1);

end

Why Induction Works

• Computations carried out by a computer/machine can, in essence, be understood as mathematical
functions.

• To solve practical problems with computers,

– objects/things in a practical domain must be modeled as (mostly discrete) mathematical struc-
tures/sets, and

– various manipulations of the objects become functions on the corresponding mathematical struc-
tures.

• Many mathematical structures are naturally defined by induction.

• Functions on inductive structures are also naturally defined by induction (recursion).

2

Recursively/Inductively-Defined Sets

• The natural numbers (including 0):

1. Base case: 0 is a natural number.

2. Inductive step: if n is a natural number, then n + 1 is also a natural number.

• Binary trees:

1. Base case: the empty tree is a binary tree.

2. Inductive step: if L and R are binary trees, then a node with L and R as the left and the right
children is also a binary tree.

• Nonempty binary trees:

1. Base case: a single root node (without any child) is a binary tree.

2. Inductive step: if L and R are binary trees, then a node with L as the left child and/or R as the
right child is also a binary tree.

Structural Induction

• Structural induction is a generalization of mathematical induction on the natural numbers.

• It is used to prove that some proposition P (x) holds for all x of some sort of recursively/inductively
defined structure such as binary trees.

• Proof by structural induction:

1. Base case: the proposition holds for all the minimal structures.

2. Inductive step: if the proposition holds for the immediate substructures of a certain structure S,
then it also holds for S.

3 Proofs by Induction

Another Simple Example

Theorem 6 (2.4). If n is a natural number and 1 + x > 0, then (1 + x)n ≥ 1 + nx.

• Below are the key steps:

(1 + x)n+1 = (1 + x)(1 + x)n

{induction hypothesis and 1 + x > 0}
≥ (1 + x)(1 + nx)
= 1 + (n + 1)x + nx2

≥ 1 + (n + 1)x

• The main point here is that we should be clear about how conditions listed in the theorem are used.

3

3.1 Proving vs. Computing

Proving vs. Computing

Theorem 7 (2.2). 1 + 2 + · · ·+ n = n(n+1)
2 .

• This can be easily proven by induction.

• Key steps: 1 + 2 + · · · + n + (n + 1) = n(n+1)
2 + (n + 1) = n2+n+2n+2

2 = n2+3n+2
2 = (n+1)(n+2)

2 =
(n+1)((n+1)+1)

2 .

• Induction seems to be useful only if we already know the sum.

• What if we are asked to compute the sum of a series?

• Let’s try 8 + 13 + 18 + 23 + · · ·+ (3 + 5n).

Proving vs. Computing (cont.)

• Idea: guess and then verify by an inductive proof!

• The sum should be of the form an2 + bn + c.

• By checking n = 1, 2, and 3, we get 5
2n

2 + 11
2 n.

• Verify this for all n, i.e., the following theorem, by induction.

Theorem 8 (2.3). 8 + 13 + 18 + 23 + · · ·+ (3 + 5n) = 5
2n

2 + 11
2 n.

3.2 Counting Regions

Counting Regions

Source: [Manber 1989].

4

Counting Regions (cont.)

Theorem 9 (2.5). The number of regions in the plane formed by n lines in general position is n(n+1)
2 + 1.

A set of lines are in general position if (1) no two lines are parallel and (2) no three lines intersect at
a common point.

• We observe that n(n+1)
2 = 1 + 2 + · · ·+ n.

• So, it suffices to prove the following:

Lemma 10. Adding one more line (the n-th line) to n − 1 lines in general position in the plane increases
the number of regions by n.

3.3 A Summation Problem

A Summation Problem

1 = 1
3 + 5 = 8

7 + 9 + 11 = 27
13 + 15 + 17 + 19 = 64

21 + 23 + 25 + 27 + 29 = 125

Theorem 11. The sum of row n in the triangle is n3.

Examine the difference between rows i + 1 and i ...

Lemma 12. The last number in row n + 1 is n2 + 3n + 1.

A Simple Inequality

Theorem 13 (2.7). 1
2 + 1

4 + 1
8 + · · ·+ 1

2n < 1, for all n ≥ 1.

• There are at least two ways to select n terms from n + 1 terms.

1. (1
2 + 1

4 + 1
8 + · · ·+ 1

2n) + 1
2n+1 .

2. 1
2 + (1

4 + 1
8 + · · ·+ 1

2n + 1
2n+1).

• The second one leads to a successful inductive proof:

1
2 + (1

4 + 1
8 + · · ·+ 1

2n + 1
2n+1)

= 1
2 + 1

2 (1
2 + 1

4 + · · ·+ 1
2n−1 + 1

2n)

< 1
2 + 1

2

= 1

5

3.4 Euler’s Formula

Euler’s Formula

Source: [Manber 1989].

Euler’s Formula (cont.)

Theorem 14 (2.8). The number of vertices (V), edges (E), and faces (F) in an arbitrary connected planar
graph are related by the formula V + F = E + 2.

The proof is by induction on the number of faces.
Base case: graphs with only one face are trees . . .

Lemma 15. A tree with n vertices has n− 1 edges.

Inductive step: for a graph with more than one faces, there must be a cycle in the graph. Remove one
edge from the cyle . . .

3.5 Gray Codes

Gray Codes

• A Gray code (after Frank Gray) for n objects is a binary-encoding scheme for naming the n objects
such that the n names can be arranged in a circular list where any two adjacent names, or code words,
differ by only one bit .

• Examples:

– 00, 01, 11, 10

– 000, 001, 011, 010, 110, 111, 101, 100

– 000, 001, 011, 111, 101, 100

6

A Gray Code in Picture

A rotary encoder using a 3-bit Gray code.
Source: Wikipedia.

Gray Codes (cont.)

Theorem 16 (2.10). There exist Gray codes of length k
2 for any positive even integer k.

Source: [Manber 1989] (adapted).

Note: j in the figure equals 2(k − 1) and hence j + 2 equals 2k.

Gray Codes (cont.)

Theorem 17 (2.10+). There exist Gray codes of length log2 k for any positive integer k that is a power of
2.

Source: [Manber 1989] (adapted).

7

Gray Codes (cont.)

• 00, 01, 11, 10 (for 22 objects)

• 000, 001, 011, 010 (add a 0)

• 100, 101, 111, 110 (add a 1)

• Combine the preceding two codes (read the second in reversed order): 000, 001, 011, 010, 110, 111,
101, 100 (for 23 objects)

Gray Codes (cont.)

Theorem 18 (2.11−). There exist Gray codes of length dlog2 ke for any positive even integer k.

To generalize the result and ease the proof, we allow a Gray code to be open where the last name and
the first name may differ by more than one bit.

Theorem 19 (2.11). There exist Gray codes of length dlog2 ke for any positive integer k ≥ 2. The Gray
codes for the even values of k are closed, and the Gray codes for odd values of k are open.

Gray Codes (cont.)

• 00, 01, 11 (open Gray code for 3 objects)

• 000, 001, 011 (add a 0)

• 100, 101, 111 (add a 1)

• Combine the preceding two codes (read the second in reversed order): 000, 001, 011, 111, 101, 100
(closed Gray code for 6 objects)

Gray Codes (cont.)

Source: [Manber 1989] (adapted).

8

4 Reversed Induction

Arithmetic vs. Geometric Mean

Theorem 20 (2.13). If x1, x2, . . . , xn are all positive numbers, then (x1x2 · · ·xn)
1
n ≤ x1 + x2 + · · ·+ xn

n
.

First use the standard induction to prove the case of powers of 2 and then use the reversed induction
principle below to prove for all natural numbers.

Theorem 21 (Reversed Induction Principle). If a statement P , with a parameter n, is true for an infinite
subset of the natural numbers, and if, for every n > 1, the truth of P for n implies its truth for n− 1, then
P is true for all natural numbers.

Arithmetic vs. Geometric Mean (cont.)

• For all powers of 2, i.e., n = 2k, k ≥ 1: by induction on k.

• Base case: (x1x2)
1
2 ≤ x1+x2

2 , squaring both sides

• Inductive step:

(x1x2 · · ·x2k+1)
1

2k+1

= [(x1x2 · · ·x2k+1)
1

2k]
1
2

= [(x1x2 · · ·x2k)
1

2k (x2k+1x2k+2 · · ·x2k+1)
1

2k]
1
2

≤ (x1x2···x2k
)

1
2k +(x

2k+1
x
2k+2

···x
2k+1)

1
2k

2 , from the base case

≤
x1+x2+···+x

2k

2k
+

x
2k+1

+x
2k+2

+···+x
2k+1

2k

2 , from the Ind. Hypo.

=
x1+x2+···+x

2k+1

2k+1

Arithmetic vs. Geometric Mean (cont.)

• For all natural numbers: by reversed induction on n.

• Base case: the theorem holds for all powers of 2.

• Inductive step: observe that

x1 + x2 + · · ·+ xn−1

n− 1
=

x1 + x2 + · · ·+ xn−1 +
x1+x2+···+xn−1

n−1

n
.

Arithmetic vs. Geometric Mean (cont.)

(x1x2 · · ·xn−1(
x1+x2+···+xn−1

n−1
))

1
n ≤

x1+x2+···+xn−1+
x1+x2+···+xn−1

n−1

n

(from the Ind. Hypo.)

(x1x2 · · ·xn−1(
x1+x2+···+xn−1

n−1
))

1
n ≤ x1+x2+···+xn−1

n−1

(x1x2 · · ·xn−1(
x1+x2+···+xn−1

n−1
)) ≤ (

x1+x2+···+xn−1

n−1
)n

(x1x2 · · ·xn−1) ≤ (
x1+x2+···+xn−1

n−1
)n−1

(x1x2 · · ·xn−1)
1

n−1 ≤ (
x1+x2+···+xn−1

n−1
)

9

5 Loop Invariants

Loop Invariants

• An invariant at some point of a program is an assertion that holds whenever execution of the program
reaches that point.

• Invariants are a bridge between the static text of a program and its dynamic computation.

• An invariant at the front of a while loop is called a loop invariant of the while loop.

• A loop invariant is formally established by induction.

– Base case: the assertion holds right before the loop starts.

– Inductive step: assuming the assertion holds before the i-th iteration (i ≥ 1), it holds again after
the iteration.

Number Conversion

Algorithm Convert to Binary(n);
begin

t := n;
k := 0;
while t > 0 do

k := k + 1;
b[k] := t mod 2;
t := t div 2;

end

Number Conversion (cont.)

Theorem 22 (2.14). When Algorithm Convert to Binary terminates, the binary representation of n is stored
in the array b.

Lemma 23. If m is the integer represented by the binary array b[1..k], then n = t ·2k +m is a loop invariant
of the while loop.

See separate handout for a detailed proof.

10

