Analysis of Algorithms (Based on [Manber 1989])

Yih-Kuen Tsay
Department of Information Management
National Taiwan University

Introduction

The purpose of algorithm analysis is to predict the behavior (running time, space requirement, etc.) of an algorithm without implementing it on a specific computer. (Why?)

Introduction

The purpose of algorithm analysis is to predict the behavior (running time, space requirement, etc.) of an algorithm without implementing it on a specific computer. (Why?)
As the exact behavior of an algorithm is hard to predict, the analysis is usually an approximation:
, Relative to the input size (usually denoted by n): input possibilities too enormous to elaborate
, Asymptotic: should care more about larger inputs

* Worst-Case: easier to do, often representative (Why not average-case?)
- Such an approximation is usually good enough for comparing different algorithms for the same problem.

Complexity

Theoretically, "complexity of an algorithm" is a more precise term for "approximate behavior of an algorithm".

- Two most important measures of complexity:
, Time Complexity
an upper bound on the number of steps that the algorithm performs.
Space Complexity
an upper bound on the amount of temporary storage required for running the algorithm (excluding the input, the output, and the program itself).
We will focus on time complexity.

Comparing Running Times

How do we compare the following running times?

1. $100 n$
2. $2 n^{2}+50$
3. $100 n^{1.8}$

Comparing Running Times

How do we compare the following running times?

1. $100 n$
2. $2 n^{2}+50$
3. $100 n^{1.8}$

- We will study an approach (the O notation) that allows us to ignore constant factors and concentrate on the behavior as n goes to infinity.
- For most algorithms, the constants in the expressions of their running times tend to be small.

The O Notation

- A function $g(n)$ is $O(f(n))$ for another function $f(n)$ if there exist constants c and N such that, for all $n \geq N, g(n) \leq c f(n)$.
The function $g(n)$ may be substantially less than $c f(n)$; the O notation bounds it only from above.
The O notation allows us to ignore constants conveniently.

The O Notation

- A function $g(n)$ is $O(f(n))$ for another function $f(n)$ if there exist constants c and N such that, for all $n \geq N, g(n) \leq c f(n)$.
- The function $g(n)$ may be substantially less than $c f(n)$; the O notation bounds it only from above.
The O notation allows us to ignore constants conveniently.
- Examples:
e $5 n^{2}+15=O\left(n^{2}\right)$.
(cf. $5 n^{2}+15 \leq O\left(n^{2}\right)$ or $5 n^{2}+15 \in O\left(n^{2}\right)$)
- $5 n^{2}+15=O\left(n^{3}\right)$.
(cf. $5 n^{2}+15 \leq O\left(n^{3}\right)$ or $5 n^{2}+15 \in O\left(n^{3}\right)$)
- In an expression, $T(n)=3 n^{2}+O(n)$.

The O Notation (cont.)

- No need to specify the base of a logarithm.

擞 $\log _{2} n=\frac{\log _{10} n}{\log _{10} 2}=\frac{1}{\log _{10} 2} \log _{10} n$.

* For example, we can just write $O(\log n)$.
$O(1)$ denotes a constant.

Properties of O

We can add and multiply with O.

$$
\begin{aligned}
& \text { Lemma (3.2) } \\
& \text { 1. If } f(n)=O(s(n)) \text { and } g(n)=O(r(n)) \text {, then } \\
& f(n)+g(n)=O(s(n)+r(n)) \text {. } \\
& \text { 2. If } f(n)=O(s(n)) \text { and } g(n)=O(r(n)) \text {, then } \\
& f(n) \cdot g(n)=O(s(n) \cdot r(n)) \text {. }
\end{aligned}
$$

Properties of O

We can add and multiply with O.

$$
\begin{aligned}
& \text { Lemma (3.2) } \\
& \text { 1. If } f(n)=O(s(n)) \text { and } g(n)=O(r(n)) \text {, then } \\
& f(n)+g(n)=O(s(n)+r(n)) \text {. } \\
& \text { 2. If } f(n)=O(s(n)) \text { and } g(n)=O(r(n)) \text {, then } \\
& f(n) \cdot g(n)=O(s(n) \cdot r(n)) \text {. }
\end{aligned}
$$

However, we cannot subtract or divide with O. (Why?)

Properties of O

- We can add and multiply with O.

$$
\begin{aligned}
& \text { Lemma }(3.2) \\
& \text { 1. If } f(n)=O(s(n)) \text { and } g(n)=O(r(n)) \text {, then } \\
& f(n)+g(n)=O(s(n)+r(n)) \text {. } \\
& \text { 2. If } f(n)=O(s(n)) \text { and } g(n)=O(r(n)) \text {, then } \\
& f(n) \cdot g(n)=O(s(n) \cdot r(n)) \text {. }
\end{aligned}
$$

However, we cannot subtract or divide with O. (Why?)

$$
\begin{aligned}
2 n & =O(n), n=O(n), \text { and } 2 n-n=n \neq O(n-n) . \\
n^{2} & =O\left(n^{2}\right), n=O\left(n^{2}\right), \text { and } n^{2} / n=n \neq O\left(n^{2} / n^{2}\right) .
\end{aligned}
$$

Polynomial vs. Exponential

A function $f(n)$ is monotonically growing if $n_{1} \geq n_{2}$ implies that $f\left(n_{1}\right) \geq f\left(n_{2}\right)$.

An exponential function grows at least as fast as a polynomial function does.

Theorem (3.1)

For all constants $c>0$ and $a>1$, and for all monotonically growing functions $f(n),(f(n))^{c}=O\left(a^{f(n)}\right)$.

Polynomial vs. Exponential

A function $f(n)$ is monotonically growing if $n_{1} \geq n_{2}$ implies that $f\left(n_{1}\right) \geq f\left(n_{2}\right)$.An exponential function grows at least as fast as a polynomial function does.

Theorem (3.1)

For all constants $c>0$ and $a>1$, and for all monotonically growing functions $f(n),(f(n))^{c}=O\left(a^{f(n)}\right)$.

- Examples:

Take n as $f(n), n^{c}=O\left(a^{n}\right)$.
Take $\log _{a} n$ as $f(n),\left(\log _{a} n\right)^{c}=O\left(a^{\log _{a} n}\right)=O(n)$.

Speed of Growth

$\log n$	n	$n \log n$	n^{2}	n^{3}	2^{n}
0	1	0	1	1	2
1	2	2	4	8	4
2	4	8	16	64	16
3	8	24	64	512	256
4	16	64	256	4,096	65,536
5	32	160	1,024	32,768	$4,294,967,296$

Table 1.7 Function values

Source: [E. Horowitz et al. 1998].

Speed of Growth (cont.)

running times	time 1 1000 steps/sec	time ${ }_{2}$ 2000 steps/sec	time 3 $4000 \mathrm{steps} / \mathrm{sec}$	time 4 8000 steps/sec
$\log _{2} n$	0.010	0.005	0.003	0.001
n	1	0.5	0.25	0.125
$n \log _{2} n$	10	5	2.5	1.25
$n^{1.5}$	32	16	8	4
n^{2}	1,000	500	250	125
n^{3}	1,000,000	500,000	250,000	125,000
$1.1{ }^{n}$	10^{39}	10^{39}	10^{38}	10^{38}

Table 3.1 Running times (int seconds) under different assumptions $(\mathrm{n}=1000)$

Source: [Manber 1989].

O, o, Ω, and Θ

Let $T(n)$ be the number of steps required to solve a given problem for input size n.
We say that $T(n)=\Omega(g(n))$ or the problem has a lower bound of $\Omega(g(n))$ if there exist constants c and N such that, for all $n \geq N, T(n) \geq c g(n)$.

- If a certain function $f(n)$ satisfies both $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$, then we say that $f(n)=\Theta(g(n))$.

O, o, Ω, and Θ

Let $T(n)$ be the number of steps required to solve a given problem for input size n.
We say that $T(n)=\Omega(g(n))$ or the problem has a lower bound of $\Omega(g(n))$ if there exist constants c and N such that, for all $n \geq N, T(n) \geq c g(n)$.

- If a certain function $f(n)$ satisfies both $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$, then we say that $f(n)=\Theta(g(n))$.
We say that $f(n)=o(g(n))$ if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$.

Polynomial vs. Exponential (cont.)

- An exponential function grows faster than a polynomial function does.

Theorem (3.3)

For all constants $c>0$ and $a>1$, and for all monotonically growing functions $f(n)$, we have

$$
(f(n))^{c}=o\left(a^{f(n)}\right) .
$$

Consider a previous example again: Take $\log _{a} n$ as $f(n)$. For all $c>0$ and $a>1$,

$$
\left(\log _{a} n\right)^{c}=o\left(a^{\log _{a} n}\right)=o(n) .
$$

Sums

- Techniques for summing expressions are essential for complexity analysis.
- For example, given that we know

$$
S_{0}(n)=\sum_{i=1}^{n} 1=n
$$

and

$$
S_{1}(n)=\sum_{i=1}^{n} i=1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

we want to compute the sum

$$
S_{2}(n)=\sum_{i=1}^{n} i^{2}=1^{2}+2^{2}+3^{2}+\cdots+n^{2}
$$

Sums (cont.)

From

$$
(i+1)^{3}=i^{3}+3 i^{2}+3 i+1,
$$

we have

$$
(i+1)^{3}-i^{3}=3 i^{2}+3 i+1
$$

$$
\begin{aligned}
& 2^{3}-1^{3}=3 \times 1^{2}+3 \times 1+1 \\
& 3^{3}-2^{3}=3 \times 2^{2}+3 \times 2+1 \\
& 4^{3}-3^{3}=3 \times 3^{2}+3 \times 3+1
\end{aligned}
$$

$$
\begin{aligned}
(n+1)^{3}-n^{3} & =3 \times n^{2}+3 \times n+1 \\
(n+1)^{3}-1 & =3 \times S_{2}(n)+3 \times S_{1}(n)+S_{0}(n)
\end{aligned}
$$

$$
\left(S_{3}(n+1)-S_{3}(1)\right)-S_{3}(n)=3 \times S_{2}(n)+3 \times S_{1}(n)+S_{0}(n)
$$

Sums (cont.)

- So, we have

$$
(n+1)^{3}-1=3 \times S_{2}(n)+3 \times S_{1}(n)+S_{0}(n)
$$

Given $S_{0}(n)$ and $S_{1}(n)$, the sum $S_{2}(n)$ can be computed by straightforward algebra.
-
Recall that the left-hand side $(n+1)^{3}-1$ equals $\left(S_{3}(n+1)-S_{3}(1)\right)-S_{3}(n)$, a result from "shifting and canceling" terms of two sums.

Sums (cont.)

So, we have

$$
(n+1)^{3}-1=3 \times S_{2}(n)+3 \times S_{1}(n)+S_{0}(n)
$$

Given $S_{0}(n)$ and $S_{1}(n)$, the sum $S_{2}(n)$ can be computed by straightforward algebra.
-
Recall that the left-hand side $(n+1)^{3}-1$ equals $\left(S_{3}(n+1)-S_{3}(1)\right)-S_{3}(n)$, a result from "shifting and canceling" terms of two sums.
This generalizes to $S_{k}(n)$, for $k>2$.
Similar shifting and canceling techniques apply to other kinds of sums.

Recurrence Relations

A recurrence relation is a way to define a function by an expression involving the same function.

- The Fibonacci numbers can be defined as follows:

$$
\left\{\begin{array}{l}
F(1)=1 \\
F(2)=1 \\
F(n)=F(n-2)+F(n-1)
\end{array}\right.
$$

We would need $k-2$ steps to compute $F(k)$.

Recurrence Relations

- A recurrence relation is a way to define a function by an expression involving the same function.
- The Fibonacci numbers can be defined as follows:

$$
\left\{\begin{array}{l}
F(1)=1 \\
F(2)=1 \\
F(n)=F(n-2)+F(n-1)
\end{array}\right.
$$

We would need $k-2$ steps to compute $F(k)$.

- It is more convenient to have an explicit (or closed-form) expression.
To obtain the explicit expression is called solving the recurrence relation.

Guessing and Proving an Upper Bound

Recurrence relation: $\left\{\begin{array}{l}T(2)=1 \\ T(2 n) \leq 2 T(n)+2 n-1\end{array}\right.$

- Guess: $T(n)=O(n \log n)$.

Guessing and Proving an Upper Bound

Recurrence relation: $\left\{\begin{array}{l}T(2)=1 \\ T(2 n) \leq 2 T(n)+2 n-1\end{array}\right.$
Guess: $T(n)=O(n \log n)$.

- Proof:

1. Base case: $T(2) \leq 2 \log 2$.
2. Inductive step: $T(2 n) \leq 2 T(n)+2 n-1$

$$
\begin{aligned}
& \leq 2(n \log n)+2 n-1 \\
& =2 n \log n+2 n \log 2-1 \\
& \leq 2 n(\log n+\log 2) \\
& =2 n \log 2 n
\end{aligned}
$$

Recurrent Relations with Full History

Example:

$$
T(n)=c+\sum_{i=1}^{n-1} T(i)
$$

where c is a constant and $T(1)$ is given separately.
$T(n)-T(n-1)=\left(c+\sum_{i=1}^{n-1} T(i)\right)-\left(c+\sum_{i=1}^{n-2} T(i)\right)=T(n-1)$;
hence, $T(n)=2 T(n-1)$. (This holds only for $n \geq 3$.)
So, we get

$$
\left\{\begin{array}{l}
T(2)=c+T(1) \\
T(n)=2 T(n-1) \quad \text { if } n \geq 3
\end{array}\right.
$$

which is easier to solve.

- Other examples as a reading assignment ...

Divide and Conquer Relations

The running time $T(n)$ of a divide-and-conquer algorithm satisfies

$$
T(n)=a T(n / b)+c n^{k}
$$

where
\% a is the number of subproblems, n / b is the size of each subproblem, and

* $c n^{k}$ is the running time of the solutions-combining algorithm.

Divide and Conquer Relations (cont.)

Assume, for simplicity, $n=b^{m}\left(\frac{n}{b^{m}}=1, \frac{n}{b^{m-1}}=b\right.$, etc. $)$.

$$
\begin{aligned}
T(n) & =a T\left(\frac{n}{b}\right)+c n^{k} \\
& =a\left(a T\left(\frac{n}{b^{2}}\right)+c\left(\frac{n}{b}\right)^{k}\right)+c n^{k} \\
& =a\left(a\left(a T\left(\frac{n}{b^{3}}\right)+c\left(\frac{n}{b^{2}}\right)^{k}\right)+c\left(\frac{n}{b}\right)^{k}\right)+c n^{k} \\
& \cdots \\
& =a\left(a\left(\cdots\left(a T\left(\frac{n}{b^{m}}\right)+c\left(\frac{n}{b^{m-1}}\right)^{k}\right)+\cdots\right)+c\left(\frac{n}{b}\right)^{k}\right)+c n^{k}
\end{aligned}
$$

Assuming $T(1)=c$,

$$
T(n)=c \sum_{i=0}^{m} a^{m-i} b^{i k}=c a^{m} \sum_{i=0}^{m}\left(\frac{b^{k}}{a}\right)^{i}
$$

Three cases: $\frac{b^{k}}{a}<1, \frac{b^{k}}{a}=1$, and $\frac{b^{k}}{a}>1$.

Divide and Conquer Relations (cont.)

Theorem (3.4)

The solution of the recurrence relation $T(n)=a T(n / b)+c n^{k}$, where a and b are integer constants, $a \geq 1, b \geq 2$, and c and k are positive constants, is

$$
T(n)= \begin{cases}O\left(n^{\log _{b} a}\right) & \text { if } a>b^{k} \\ O\left(n^{k} \log n\right) & \text { if } a=b^{k} \\ O\left(n^{k}\right) & \text { if } a<b^{k}\end{cases}
$$

Useful Facts

- Harmonic series

$$
H_{n}=\sum_{k=1}^{n} \frac{1}{k}=\ln n+\gamma+O(1 / n),
$$

where $\gamma=0.577 \ldots$ is Euler's constant.

- Sum of logarithms

$$
\begin{aligned}
\sum_{i=1}^{n}\left\lfloor\log _{2} i\right\rfloor & =(n+1)\left\lfloor\log _{2} n\right\rfloor-2^{\left\lfloor\log _{2} n\right\rfloor+1}+2 \\
& =\Theta(n \log n) .
\end{aligned}
$$

Useful Facts (cont.)

- Bounding a summation by an integral: If $f(x)$ is monotonically increasing, then

$$
\sum_{i=1}^{n} f(i) \leq \int_{1}^{n+1} f(x) d x
$$

If $f(x)$ is monotonically decreasing, then

$$
\sum_{i=1}^{n} f(i) \leq f(1)+\int_{1}^{n} f(x) d x
$$

- Stirling's approximation

$$
n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}(1+O(1 / n)) .
$$

Bounding a Summation by an Integral

$$
\sum_{i=1}^{n} f(i) \leq \int_{1}^{n+1} f(x) d x
$$

