

Design by Induction (Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

Design by Induction

Algorithms 2016 1 / 29

3

イロト イポト イヨト イヨト

Introduction

- It is not necessary to design the steps required to solve a problem from scratch.
- 😚 It is sufficient to guarantee the following:
 - 1. It is possible to solve one small instance or a few small instances of the problem. (base case)
 - 2. A solution to every problem/instance can be constructed from solutions to smaller problems/instances. (inductive step)

< ロ > < 同 > < 三 > < 三

Evaluating Polynomials

Problem

Given a sequence of real numbers a_n , a_{n-1} , \cdots , a_1 , a_0 , and a real number x, compute the value of the polynomial

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0.$$

Yih-Kuen Tsay (IM.NTU)

Evaluating Polynomials

Problem

Given a sequence of real numbers a_n , a_{n-1} , \cdots , a_1 , a_0 , and a real number x, compute the value of the polynomial

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0.$$

Motivation: different approaches to the inductive step may result in algorithms of very different time complexities.

- Let $P_{n-1}(x) = a_{n-1}x^{n-1} + \cdots + a_1x + a_0$.
- Induction hypothesis (first attempt) We know how to evaluate a polynomial represented by the input a_{n-1}, ..., a₁, a₀, at the point x, i.e., we know how to compute P_{n-1}(x).
 P_n(x) = a_nxⁿ + P_{n-1}(x).

(日) (周) (三) (三) (三) (000

Induction hypothesis (second attempt) We know how to compute P_{n-1}(x), and we know how to compute xⁿ⁻¹.

•
$$P_n(x) = a_n x(x^{n-1}) + P_{n-1}(x).$$

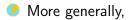
Algorithms 2016 5 / 29

• Let
$$P'_{n-1}(x) = a_n x^{n-1} + a_{n-1} x^{n-2} + \dots + a_1$$
.

Induction hypothesis (final attempt) We know how to evaluate a polynomial represented by the coefficients a_n, a_{n-1}, ..., a₁, at the point x, i.e., we know how to compute P'_{n-1}(x).

•
$$P_n(x) = P'_n(x) = P'_{n-1}(x) \cdot x + a_0.$$

Yih-Kuen Tsay (IM.NTU)



$$\left\{ egin{array}{l} P_0'(x) = a_n \ P_i'(x) = P_{i-1}'(x) \cdot x + a_{n-i}, \ ext{for} \ 1 \leq i \leq n \end{array}
ight.$$

Yih-Kuen Tsay (IM.NTU)

Design by Induction

Algorithms 2016 7 / 29

3

(日)

Algorithm Polynomial_Evaluation (\bar{a}, x) ; begin

$$P := a_n;$$

for $i := 1$ to n do
$$P := x * P + a_{n-i}$$

end

This algorithm is known as Horner's rule.

Yih-Kuen Tsay (IM.NTU)

1

Design by Induction

Algorithms 2016 8 / 29

Maximal Induced Subgraph

Problem

Given an undirected graph G = (V, E) and an integer k, find an induced subgraph H = (U, F) of G of maximum size such that all vertices of H have degree $\geq k$ (in H), or conclude that no such induced subgraph exists.

Maximal Induced Subgraph

Problem

Given an undirected graph G = (V, E) and an integer k, find an induced subgraph H = (U, F) of G of maximum size such that all vertices of H have degree $\geq k$ (in H), or conclude that no such induced subgraph exists.

Design Idea: in the inductive step, we try to remove one vertex (that cannot possibly be part of the solution) to get a smaller instance.

・ロン ・四 ・ ・ ヨン ・ ヨン

One-to-One Mapping

Problem

Given a finite set A and a mapping f from A to itself, find a subset $S \subseteq A$ with the maximum number of elements, such that (1) the function f maps every element of S to another element of S (i.e., f maps S into itself), and (2) no two elements of S are mapped to the same element (i.e., f is one-to-one when restricted to S).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

One-to-One Mapping

Problem

Given a finite set A and a mapping f from A to itself, find a subset $S \subseteq A$ with the maximum number of elements, such that (1) the function f maps every element of S to another element of S (i.e., f maps S into itself), and (2) no two elements of S are mapped to the same element (i.e., f is one-to-one when restricted to S).

Design Idea: similar to the previous problem; in the inductive step, we try to remove one element (that cannot possibly be part of the solution) to get a smaller instance.

イロト 不得 トイヨト イヨト 二日

One-to-One Mapping (cont.)

Algorithm Mapping (f, n); begin

```
S := A:
for i := 1 to n do c[i] := 0;
for i := 1 to n do increment c[f[i]];
for i := 1 to n do
   if c[i] = 0 then put i in Queue;
while Queue not empty do
    remove i from the top of Queue;
   S := S - \{i\};
   decrement c[f[i]];
   if c[f[i]] = 0 then put f[i] in Queue
```

end

Yih-Kuen Tsay (IM.NTU)

Algorithms 2016 11 / 29

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Celebrity

Problem

Given an $n \times n$ adjacency matrix, determine whether there exists an i (the "celebrity") such that all the entries in the i-th column (except for the ii-th entry) are 1, and all the entries in the i-th row (except for the ii-th entry) are 0.

Note: A celebrity corresponds to a sink of the directed graph.

Note: Every directed graph has at most one sink.

イロト 不得下 イヨト イヨト 二日

Celebrity

Problem

Given an $n \times n$ adjacency matrix, determine whether there exists an i (the "celebrity") such that all the entries in the i-th column (except for the ii-th entry) are 1, and all the entries in the i-th row (except for the ii-th entry) are 0.

Note: A celebrity corresponds to a sink of the directed graph.

Note: Every directed graph has at most one sink.

Motivation: the trivial solution has a time complexity of $O(n^2)$. Can we do better, in O(n)?

Yih-Kuen Tsay (IM.NTU)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Celebrity (cont.)

Algorithm Celebrity (*Know*); **begin**

i := 1; j := 2; next := 3;while $next \le n + 1$ do if Know[i, j] then i := nextelse j := next; next := next + 1;if i = n + 1 then candidate := jelse candidate := i;

Yih-Kuen Tsay (IM.NTU)

Algorithms 2016 13 / 29

イロト イポト イヨト イヨト 二日

Celebrity (cont.)

wrong := false; k := 1: Know[candidate, candidate] := false;while not wrong and k < n do if Know[candidate, k] then wrong := true;**if** not Know[k, candidate] **then** if candidate $\neq k$ then wrong := true; k := k + 1: **if** not wrong **then** celebrity := candidate else celebrity := 0;

end

Yih-Kuen Tsay (IM.NTU)

Algorithms 2016 14 / 29

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

The Skyline Problem

Problem

Given the exact locations and shapes of several rectangular buildings in a city, draw the skyline (in two dimension) of these buildings, eliminating hidden lines.

Motivation: different approaches to the inductive step may result in algorithms of very different time complexities.

The Skyline Problem

Problem

Given the exact locations and shapes of several rectangular buildings in a city, draw the skyline (in two dimension) of these buildings, eliminating hidden lines.

Motivation: different approaches to the inductive step may result in algorithms of very different time complexities.

Compare: adding buildings one by one to an existing skyline vs. merging two skylines of about the same size

Yih-Kuen Tsay (IM.NTU)

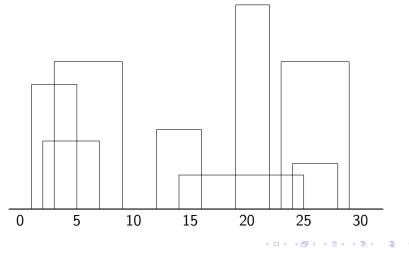
Design by Induction

Algorithms 2016 15 / 29

イロト イポト イヨト イヨト 二日

Representation of a Skyline

(1,11,5), (2,6,7), (3,13,9), (12,7,16), (14,3,25), (19,18,22), (23,13,29), and (24,4,28).



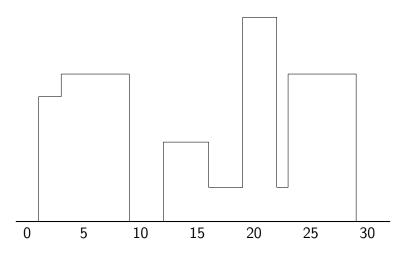
Yih-Kuen Tsay (IM.NTU)

Design by Induction

Algorithms 2016 16 / 29

Representation of a Skyline (cont.)

(1,**11**,3,**13**,9,**0**,12,**7**,16,**3**,19,**18**,22,**3**,23,**13**,29).



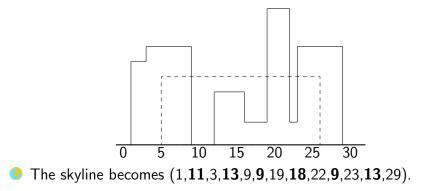
Yih-Kuen Tsay (IM.NTU)

Design by Induction

Algorithms 2016 17 / 29

Adding a Building

Add (5,9,26) to (1,11,3,13,9,0,12,7,16,3,19,18,22,3,23,13,29).



Yih-Kuen Tsay (IM.NTU)

Design by Induction

Algorithms 2016 18 / 29

< 🗇 🕨

Merging Two Skylines

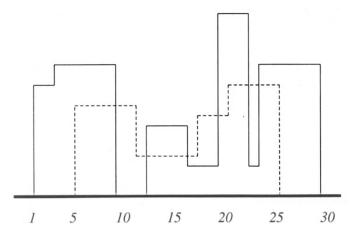


Figure 5.7 Merging two skylines.

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU)

Design by Induction

-Algorithms 2016 19 / 29

< 🗇 🕨

Balance Factors in Binary Trees

Problem

Given a binary tree T with n nodes, compute the balance factors of all nodes.

The balance factor of a node is defined as the difference between the height of the node's left subtree and the height of the node's right subtree.

Balance Factors in Binary Trees

Problem

Given a binary tree T with n nodes, compute the balance factors of all nodes.

The balance factor of a node is defined as the difference between the height of the node's left subtree and the height of the node's right subtree.

Motivation: an example of why we must strengthen the hypothesis (and hence the problem to be solved).

Yih-Kuen Tsay (IM.NTU)

Design by Induction

Algorithms 2016 20 / 29

Balance Factors in Binary Trees (cont.)

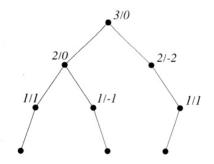


Figure 5.8 A binary tree. The numbers represent h/b, where h is the height and b is the balance factor.

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU)

Design by Induction

Algorithms 2016 21 / 29

Image: A match a ma

Balance Factors in Binary Trees (cont.)

Induction hypothesis

We know how to compute balance factors of all nodes in trees that have < n nodes.

Balance Factors in Binary Trees (cont.)

Induction hypothesis

We know how to compute balance factors of all nodes in trees that have < n nodes.

Stronger induction hypothesis

We know how to compute balance factors and heights of all nodes in trees that have < n nodes.

イロト イヨト イヨト イヨト

Maximum Consecutive Subsequence

Problem

Given a sequence x_1, x_2, \dots, x_n of real numbers (not necessarily positive) find a subsequence x_i, x_{i+1}, \dots, x_j (of consecutive elements) such that the sum of the numbers in it is maximum over all subsequences of consecutive elements.

Example:

In the sequence (2, -3, 1.5, -1, 3, -2, -3, 3), the maximum subsequence is (1.5, -1, 3).

Yih-Kuen Tsay (IM.NTU)

イロト 不得下 イヨト イヨト 二日

Maximum Consecutive Subsequence

Problem

Given a sequence x_1, x_2, \dots, x_n of real numbers (not necessarily positive) find a subsequence x_i, x_{i+1}, \dots, x_j (of consecutive elements) such that the sum of the numbers in it is maximum over all subsequences of consecutive elements.

Example:

In the sequence (2, -3, 1.5, -1, 3, -2, -3, 3), the maximum subsequence is (1.5, -1, 3).

Motivation: another example of strengthening the hypothesis.

Yih-Kuen Tsay (IM.NTU)

Maximum Consecutive Subsequence (cont.)

Induction hypothesis

We know how to find the maximum subsequence in sequences of size < n.

Yih-Kuen Tsay (IM.NTU)

Algorithms 2016 24 / 29

(a)

Maximum Consecutive Subsequence (cont.)

Induction hypothesis

We know how to find the maximum subsequence in sequences of size < n.

Stronger induction hypothesis

We know how to find, in sequences of size < n, the maximum subsequence overall and the maximum subsequence that is a suffix.

Maximum Consecutive Subsequence (cont.)

Algorithm Max_Consec_Subseq (X, n); begin

Global Max := 0: Suffix_Max := 0: for i = 1 to n do if $x[i] + Suffix_Max > Global_Max$ then $Suffix_Max := Suffix_Max + x[i];$ Global Max = Suffix Max else if $x[i] + Suffix_Max > 0$ then $Suffix_Max := Suffix_Max + x[i]$ else Suffix Max = 0end

Yih-Kuen Tsay (IM.NTU)

Algorithms 2016 25 / 29

イロト 不得下 イヨト イヨト

The Knapsack Problem

Problem

Given an integer K and n items of different sizes such that the *i*-th item has an integer size k_i , find a subset of the items whose sizes sum to exactly K, or determine that no such subset exists.

< ロ > < 同 > < 三 > < 三

The Knapsack Problem

Problem

Given an integer K and n items of different sizes such that the *i*-th item has an integer size k_i , find a subset of the items whose sizes sum to exactly K, or determine that no such subset exists.

Design Idea: use strong induction so that solutions to all smaller instances may be used.

• Let P(n, K) denote the problem where *n* is the number of items and *K* is the size of the knapsack.

Induction hypothesis

We know how to solve P(n-1, K).

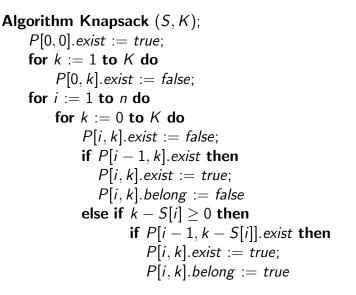
- Let P(n, K) denote the problem where *n* is the number of items and *K* is the size of the knapsack.
- Induction hypothesis We know how to solve P(n-1, K).
- Stronger induction hypothesis We know how to solve P(n-1, k), for all $0 \le k \le K$.

An example of the table constructed for the knapsack problem:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
$k_1 = 2$	0	-	I	-	-	-	-	-	-	-	-	-	-	-	-	-	-
$k_2 = 3$	0	-	0	1	-	I	-	-	-	-	-	-	-	-	-	-	-
$k_3 = 5$	0	-	0	0	-	0	-	1	1	-	I	-	-	-	-	-	-
$k_4 = 6$	0	-	0	0	-	0	1	0	0	1	0	1	-	1	1	-	I

"I": a solution containing this item has been found. "O": a solution without this item has been found. "-": no solution has yet been found.

(日) (同) (日) (日)



Algorithms 2016 29 / 29

イロト イポト イヨト イヨト 二日