
String Processing
(Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 1 / 18

Data Compression

Problem

Given a text (a sequence of characters), find an encoding for the
characters that satisfies the prefix constraint and that minimizes the
total number of bits needed to encode the text.

The prefix constraint states that the prefixes of an encoding of one
character must not be equal to a complete encoding of another
character.

Denote the characters by c1, c2, · · · , cn and their frequencies by f1,
f2, · · · , fn. Given an encoding E in which a bit string si represents ci ,
the length (number of bits) of the text encoded by using E is∑n

i=1 |si | · fi .

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 2 / 18

A Code Tree

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 3 / 18

A Huffman Tree

Source: [Manber 1989]. (Frequencies: A: 5, B: 2, C: 3, D: 4, E: 10, F:1)

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 4 / 18

Huffman Encoding

Algorithm Huffman Encoding (S , f);
insert all characters into a heap H

according to their frequencies;
while H not empty do

if H contains only one character X then
make X the root of T

else
delete X and Y with lowest frequencies;

from H ;
create Z with a frequency equal to the

sum of the frequencies of X and Y ;
insert Z into H ;
make X and Y children of Z in T

What is its time complexity?

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 5 / 18

Huffman Encoding

Algorithm Huffman Encoding (S , f);
insert all characters into a heap H

according to their frequencies;
while H not empty do

if H contains only one character X then
make X the root of T

else
delete X and Y with lowest frequencies;

from H ;
create Z with a frequency equal to the

sum of the frequencies of X and Y ;
insert Z into H ;
make X and Y children of Z in T

What is its time complexity?
Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 5 / 18

String Matching

Problem

Given two strings A (= a1a2 · · · an) and B (= b1b2 · · · bm), find the
first occurrence (if any) of B in A. In other words, find the smallest k
such that, for all i , 1 ≤ i ≤ m, we have ak−1+i = bi .

A (non-empty) substring of a string A is a consecutive sequence of
characters aiai+1 · · · aj (i ≤ j) from A.

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 6 / 18

Straightforward String Matching

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 7 / 18

Straightforward String Matching (cont.)

What is the time complexity?

B (= b1b2 · · · bm) may be compared against

a1a2 · · · am,
a2a3 · · · am+1,
. . ., and
an−m+1an−m+2 · · · an

For example, A = xxxx . . . xxxy and B = xxxy .

So, the time complexity is O(m × n).

We will exam the cause of defficiency.

We then study an efficient algorithm, which is linear-time with a
preprocessing stage.

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 8 / 18

Straightforward String Matching (cont.)

What is the time complexity?
B (= b1b2 · · · bm) may be compared against

a1a2 · · · am,
a2a3 · · · am+1,
. . ., and
an−m+1an−m+2 · · · an

For example, A = xxxx . . . xxxy and B = xxxy .

So, the time complexity is O(m × n).

We will exam the cause of defficiency.

We then study an efficient algorithm, which is linear-time with a
preprocessing stage.

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 8 / 18

Straightforward String Matching (cont.)

What is the time complexity?
B (= b1b2 · · · bm) may be compared against

a1a2 · · · am,
a2a3 · · · am+1,
. . ., and
an−m+1an−m+2 · · · an

For example, A = xxxx . . . xxxy and B = xxxy .

So, the time complexity is O(m × n).

We will exam the cause of defficiency.

We then study an efficient algorithm, which is linear-time with a
preprocessing stage.

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 8 / 18

Straightforward String Matching (cont.)

What is the time complexity?
B (= b1b2 · · · bm) may be compared against

a1a2 · · · am,
a2a3 · · · am+1,
. . ., and
an−m+1an−m+2 · · · an

For example, A = xxxx . . . xxxy and B = xxxy .

So, the time complexity is O(m × n).

We will exam the cause of defficiency.

We then study an efficient algorithm, which is linear-time with a
preprocessing stage.

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 8 / 18

Matching Against Itself

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 9 / 18

The Values of next

Source: [Manber 1989].

The value of next[j] tells the length of the longest proper prefix that
is equal to a suffix of b1b2 . . . bj−1.

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 10 / 18

The KMP Algorithm

Algorithm String Match (A, n,B ,m);
begin

j := 1; i := 1;
Start := 0;
while Start = 0 and i ≤ n do

if B[j] = A[i] then
j := j + 1; i := i + 1

else
j := next[j] + 1;
if j = 0 then

j := 1; i := i + 1;
if j = m + 1 then Start := i −m

end

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 11 / 18

The KMP Algorithm (cont.)

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 12 / 18

The KMP Algorithm (cont.)

Algorithm Compute Next (B ,m);
begin

next[1] := −1; next[2] := 0;
for i := 3 to m do

j := next[i − 1] + 1;
while B[i − 1] 6= B[j] and j > 0 do

j := next[j] + 1;
next[i] := j

end

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 13 / 18

The KMP Algorithm (cont.)

What is its time complexity?

Because of backtracking, ai may be compared against

bj ,
bj−1,
. . ., and
b2

However, for these to happen, each of ai−j+2, ai−j+3, . . . , ai−1

was compared against the corresponding character in
b1b2 . . . bj−1 just once.
We may re-assign the costs of comparing ai against
bj−1, bj−2, . . . , b2 to those of comparing ai−j+2ai−j+3 . . . ai−1

against b1b2 . . . bj−1.

Every ai is incurred the cost of at most two comparisons.

So, the time complexity is O(n).

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 14 / 18

The KMP Algorithm (cont.)

What is its time complexity?
Because of backtracking, ai may be compared against

bj ,
bj−1,
. . ., and
b2

However, for these to happen, each of ai−j+2, ai−j+3, . . . , ai−1

was compared against the corresponding character in
b1b2 . . . bj−1 just once.
We may re-assign the costs of comparing ai against
bj−1, bj−2, . . . , b2 to those of comparing ai−j+2ai−j+3 . . . ai−1

against b1b2 . . . bj−1.

Every ai is incurred the cost of at most two comparisons.

So, the time complexity is O(n).

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 14 / 18

The KMP Algorithm (cont.)

What is its time complexity?
Because of backtracking, ai may be compared against

bj ,
bj−1,
. . ., and
b2

However, for these to happen, each of ai−j+2, ai−j+3, . . . , ai−1

was compared against the corresponding character in
b1b2 . . . bj−1 just once.

We may re-assign the costs of comparing ai against
bj−1, bj−2, . . . , b2 to those of comparing ai−j+2ai−j+3 . . . ai−1

against b1b2 . . . bj−1.

Every ai is incurred the cost of at most two comparisons.

So, the time complexity is O(n).

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 14 / 18

The KMP Algorithm (cont.)

What is its time complexity?
Because of backtracking, ai may be compared against

bj ,
bj−1,
. . ., and
b2

However, for these to happen, each of ai−j+2, ai−j+3, . . . , ai−1

was compared against the corresponding character in
b1b2 . . . bj−1 just once.
We may re-assign the costs of comparing ai against
bj−1, bj−2, . . . , b2 to those of comparing ai−j+2ai−j+3 . . . ai−1

against b1b2 . . . bj−1.

Every ai is incurred the cost of at most two comparisons.

So, the time complexity is O(n).

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 14 / 18

The KMP Algorithm (cont.)

What is its time complexity?
Because of backtracking, ai may be compared against

bj ,
bj−1,
. . ., and
b2

However, for these to happen, each of ai−j+2, ai−j+3, . . . , ai−1

was compared against the corresponding character in
b1b2 . . . bj−1 just once.
We may re-assign the costs of comparing ai against
bj−1, bj−2, . . . , b2 to those of comparing ai−j+2ai−j+3 . . . ai−1

against b1b2 . . . bj−1.

Every ai is incurred the cost of at most two comparisons.

So, the time complexity is O(n).

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 14 / 18

String Editing

Problem

Given two strings A (= a1a2 · · · an) and B (= b1b2 · · · bm), find the
minimum number of changes required to change A character by
character such that it becomes equal to B .

Three types of changes (or edit steps) allowed: (1) insert, (2) delete,
and (3) replace.

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 15 / 18

String Editing (cont.)

Let C (i , j) denote the minimum cost of changing A(i) to B(j), where
A(i) = a1a2 · · · ai and B(j) = b1b2 · · · bj .

C (i , j) = min

C (i − 1, j) + 1 (deleting ai)
C (i , j − 1) + 1 (inserting bj)
C (i − 1, j − 1) + 1 (ai → bj)
C (i − 1, j − 1) (ai = bj)

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 16 / 18

String Editing (cont.)

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 17 / 18

String Editing (cont.)

Algorithm Minimum Edit Distance (A, n,B ,m);
for i := 0 to n do C [i , 0] := i ;
for j := 1 to m do C [0, j] := j ;
for i := 1 to n do

for j := 1 to m do
x := C [i − 1, j] + 1;
y := C [i , j − 1] + 1;
if ai = bj then

z := C [i − 1, j − 1]
else

z := C [i − 1, j − 1] + 1;
C [i , j] := min(x , y , z)

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2017 18 / 18

	Data Compression
	String Matching
	String Editing

