
Algorithms [Compiled on May 12, 2018] Spring 2018

Suggested Solutions to Midterm Problems

1. Prove by induction that, for a complete binary tree, one of the two subtrees under the
root is a full binary tree and the other is a complete binary tree. An empty tree may be
considered a full binary tree and also a complete binary tree. (Note: full binary trees are
special cases of complete binary trees.)

Solution. For a complete binary tree with n (≥ 1) nodes, its nodes can be numbered 1
through n compactly such that the root is numbered 1 and, for a node numbered i (≥ 1),
its left child (if existent) is numbered 2i and its right child (if existent) is numbered 2i+1.
Conversely, a binary tree whose nodes can be compactly numbered as above must be a
complete binary tree.

The height (or depth) of a complete binary tree is the number of levels (or parent-child
edges) one needs to go through from the root to the last (n-th) node; the height of a
single-node tree is 0 by the definition. For convenience, the empty tree is considered of
height −1. The number of nodes of a full binary tree can be calculated as 2h+1−1, where
h is the height of the tree. We say that a complete binary tree is proper if it is not a full
binary tree.

To facilitate the inductive proof, we refine/strengthen the proposition in the problem
statement as follows. Note that the empty tree satisfies the proposition vacuously.

For a complete binary tree with n (≥ 1) nodes, the two subtrees of the root
satisfy exactly one of the following four conditions:

(a) The two subtrees are both full binary trees of the same height. In this case,
the entire tree is a full binary tree, i.e., n = 2i − 1 for some i ≥ 1, and the
n-th node is in the right subtree if it is not empty.

(b) The left subtree is a proper complete binary tree and is one-level taller than
the right subtree, which is a full binary tree. In this case, the n-th node is
in the left subtree.

(c) The left subtree is a full binary tree and is as tall as as the right subtree,
which is a proper complete binary tree. In this case, the n-th node is in the
right subtree.

(d) The two subtrees are both full binary trees and the left subtree is one-
level taller than the right subtree. In this case, the n-th node is in the left
subtree.

Now the proposition can readily be proven by reversed induction on the number of nodes.

Base cases: consider the complete binary trees with 0, 1, 3, 7, . . ., 2i − 1, . . . nodes,
i.e., all full binary trees, including the empty (full binary) tree. For the empty tree, the
proposition holds vacuously. And, for every nonempty full binary tree, the two subtrees
of the root are clearly also full binary trees. Condition (a) of the refined propostion holds.

Inductive step: assuming that the proposition holds for an arbitrary complete binary tree
with n nodes, we need to show that the proposition also holds for the complete binary
tree with n− 1 nodes, where n− 1 ≥ 2 and n− 1 6= 2i− 1 for any i ≥ 2. The (n− 1)-node
tree is obtained from the n-node tree by removing the n-th node. For each of the four
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conditions the n-node tree may satisfy, we argue that the (n − 1)-node tree also satifies
one of the four conditions:

(a) In this case, the removal of the n-th node turns the right subtree into a proper
complete binary tree of the same height and it follows that Condition (c) holds for
the (n− 1)-node tree.

(b) In this case, the n-th node is in the left subtree, which is a proper complete binary
tree. And, as n − 1 6= 2i − 1 for any i ≥ 2, after the removal of the n-th node, the
left subtree remains a proper complete binary tree of the same height. So, Condition
(b) also holds for the (n− 1)-node tree.

(c) In this case, after the removal of the n-th node, the right subtree either remains a
proper complete binary tree of the same height or becomes a full binary tree one-level
shorter. Consequently, either Condition (c) or Condition (d) holds for the (n − 1)-
node tree.

(d) In this case, the removal of the n-th node turns the left subtree into a proper complete
binary tree of the same height and therefore Condition (b) holds for the (n−1)-node
tree.
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2. Consider bounding summations by integrals. We already know that, if f(x) is monotoni-
cally increasing, then

n∑
i=1

f(i) ≤
∫ n+1

1
f(x)dx.

(a) The sum may also be bounded from below as follows:∫ n

0
f(x)dx ≤

n∑
i=1

f(i).

Show that this is indeed the case.

Solution. Given that f(x) is monotonically increasing, we have∫ 1
0 f(x)dx ≤ f(1)∫ 2
1 f(x)dx ≤ f(2)∫ 3
2 f(x)dx ≤ f(3)

· · ·∫ n−1
n−2 f(x)dx ≤ f(n− 1)∫ n
n−1 f(x)dx ≤ f(n)∫ n

0 f(x)dx ≤
∑n

i=1 f(i)

So, the lower bound for the summation
∑n

i=1 f(i) is correct. This is also easily seen
by comparing the areas (on the R × R plane) defined by the formulae on the two
sides. As shown in the following diagram, the integral

∫ n
0 f(x)dx equals the area

under the curve that is shaded with thin parallel lines. The area is apparently no
larger than the total area of the vertical bars which represents

∑n
i=1 f(i).
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(b) Prove, using this bounding technique, that
∑n

i=1
1
i = Θ(log n). Note that 1

i actually
decreases when i increases.

Solution. As 1
i is monotonically decreasing and the bounding technique cannot be

directly applied, we rewrite the sum as
∑n

i=1
1

(n+1)−i . Now we have a monotonically

increasing f(x) = 1
(n+1)−x , for x < n + 1. We know that

∫ 1
(n+1)−xdx = − ln((n +

1)− x), for x < n + 1.∑n
i=1

1
i =

∑n
i=1

1
(n+1)−i ≥

∫ n
0

1
(n+1)−xdx = − ln((n + 1) − n) − (− ln((n + 1) − 0)) =

ln(n + 1) ≥ lnn ≥ 1
log e log n. So,

∑n
i=1

1
i = Ω(log n).∑n

i=1
1
i =

∑n
i=1

1
(n+1)−i = 1 +

∑n−1
i=1

1
(n+1)−i ≤ 1 +

∫ n
1

1
(n+1)−xdx = 1 + (− ln((n+ 1)−

n)− (− ln((n + 1)− 1))) = 1 + lnn ≤ 1
log e log n + 1

log e log n ≤ 2
log e log n (for n ≥ 3).

So,
∑n

i=1
1
i = O(log n).

It follows that
∑n

i=1
1
i = Θ(log n). 2

3. Consider the problem of merging two skylines, which is a useful building block for com-
puting the skyline of a number of buildings. A skyline is an alternating sequence of x
coordinates and y coordinates (heights), ending with an x coordinate (as discussed in
class). The sequence of coordinates may be coveniently stored in an array, say A, with
A[0] storing the first x coordinate, A[1] the first y coordinate, A[2] the second x coordinate,
etc.

Design a linear-time procedure that prints out the resulting skyline from merging two given
skylines. Please present the procedure in suitable pseudocode. The procedure should be
named merge_skylines and invoked by merge_skylines(A,m,B,n), where A and B are
the two input skylines and A[m] and B[n] store the final x coordinate of skyline A and
that of skyline B respectively.

Solution.

merge_skylines(A,m,B,n)

// assume m,n >= 2.

begin

if A[0] < B[0] then

print A[0], A[1];

merge_a(A[1], 0, A[2..m], m-2, B, n);
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else

if A[0] > B[0] then

print B[0], B[1];

merge_b(0, B[1], A, m, B[2..n], n-2);

else // A[0] = B[0]

if A[1] < B[1] then

print B[0], B[1];

merge_b(A[1], B[1], A[2..m], m-2, B[2..n], n-2);

else // A[1] > B[1] or A[1] = B[1] (given A[0] = B[0])

print A[0], A[1];

merge_a(A[1], B[1], A[2..m], m-2, B[2..n], n-2);

end if;

end if;

end if;

end

merge_a(ya, yb, A, m, B, n);

// ya, yb are the previous y coordinates of A and B, respectively.

// ya > yb.

begin

if m = 0 and n = 0 then

if A[0] < B[0] then

print A[0], yb, B[0];

return;

else

print A[0];

return;

end if;

end if;

if m = 0 then

if A[0] < B[0] then

print A[0], yb, each entry of B;

return;

else

merge_a(ya, yb, A, m, B[2..n], n-2);

return;

end if;

end if;

if n = 0 then

if A[0] < B[0] then

if A[1] < yb then

print A[0], yb;

merge_b(A[0], yb, A[2..m], m-2, B, n);

return;

else

print A[0], A[1];

merge_a(A[1], yb, A[2..m], m-2, B, n);

return;

end if;
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else

print each entry of A;

return;

end if;

end if;

if A[0] < B[0] then

if A[1] > yb then

print A[0], A[1];

merge_a(A[1], yb, A[2..m], m-2, B, n);

else

print A[0], yb;

merge_b(A[1], yb, A[2..m], m-2, B, n);

end if;

else

if A[0] > B[0] then

if B[1] > ya then

print B[0], B[1];

merge_b(ya, B[1], A, m, B[2..n], n-2);

else

merge_a(ya, yb, A, m, B[2..n], n-2);

end if;

else // A[0] = B[0]

if A[1] < B[1] then

if B[1] = ya then

merge_b(ya, B[1], A[2..m], m-2, B[2..n], n-2);

else

merge_a(A[1], B[1], A[2..m], m-2, B[2..n], n-2);

end if;

else // A[1] > B[1] or A[1] = B[1] (given A[0] = B[0])

print A[0], A[1];

merge_a(A[1], B[1], A[2..m], m-2, B[2..n], n-2);

end if;

end if;

end if;

end

merge_b(ya, yb, A, m, B, n);

// ya, yb are the previous y coordinates of A and B, respectively.

// ya < yb.

// analogous to merge_a.

2

4. The Knapsack Problem that we discussed in class is defined as follows: Given a set S of n
items, where the ith item has an integer size S[i], and an integer K, find a subset of the
items whose sizes sum to exactly K or determine that no such subset exists.

We have described in class an algorithm to solve the problem. Modify the algorithm to
solve a variation of the knapsack problem where each item has an unlimited supply. In
your algorithm, please change the type of P [i, k].belong into integer and use it to record
the number of copies of item i needed.
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Solution.

Algorithm Knapsack Unlimited (S,K);
begin

P [0, 0].exist := true;
P [0, 0].belong := 0;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := 0

else if k − S[i] ≥ 0 then
if P [i, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := P [i, k].belong + 1

end

2

5. Show all intermediate and the final AVL trees formed by inserting the numbers 5, 7, 1, 2,
4, 3, and 6 (in this order) into an empty tree. Please use the following ordering convention:
the key of an internal node is larger than that of its left child and smaller than that of
its right child. If re-balancing operations are performed, please also show the tree before
re-balancing and indicate what type of rotation is used in the re-balancing.

Solution.

Insert 5:
5

Insert 7:

5

7
Insert 1:

5

71

Insert 2:

5

71

2
Insert 4:

5

71

2

4

Single rotation at 1:

5

72

41
Insert 3:

5

72

4

3

1
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Double rotation at 5:

4

5

7

2

31

Insert 6:

4

5

7

6

2

31

Double rotation at 5:

4

6

75

2

31

2

6. Below is the Mergesort algorithm in pseudocode:

Algorithm Mergesort (X,n);
begin M Sort(1, n) end

procedure M Sort (Left,Right);
begin

if Right− Left = 1 then
if X[Left] > X[Right] then swap(X[Left], X[Right])

else if Left 6= Right then
Middle := d12(Left + Right)e;
M Sort(Left,Middle− 1);
M Sort(Middle,Right);
// the merge part
i := Left; j := Middle; k := 0;
while (i ≤Middle− 1) and (j ≤ Right) do

k := k + 1;
if X[i] ≤ X[j] then

TEMP [k] := X[i]; i := i + 1
else TEMP [k] := X[j]; j := j + 1;

if j > Right then
for t := 0 to Middle− 1− i do

X[Right− t] := X[Middle− 1− t]
for t := 0 to k − 1 do

X[Left + t] := TEMP [1 + t]
end

7



Given the array below as input, what are the contents of array TEMP after the merge
part is executed for the first time and what are the contents of TEMP when the algorithm
terminates? Assume that each entry of TEMP has been initialized to 0 when the algorithm
starts.

1 2 3 4 5 6 7 8 9 10 11 12

7 6 3 8 5 10 11 2 1 12 4 9

Solution.

The contents of array TEMP after the merge part is executed for the first time:

1 2 3 4 5 6 7 8 9 10 11 12

3 6 0 0 0 0 0 0 0 0 0 0

The contents of array TEMP when the algorithm terminates:

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 0 0 2

7. The partition procedure in the Quicksort algorithm chooses an element as the pivot and
divide the input array A[1..n] into two parts such that, when the pivot is properly placed in
A[i], the entries in A[1..(i−1)] are less than or equal to A[i] and the entries in A[(i+1)..n]
are greater than or equal to A[i]. Please design an extension of the partition procedure so
that it chooses two pivots and divides the input array into three parts. Assuming the two
pivots are eventually placed in A[i] and A[j] (i < j) respectively, the entries in A[1..(i−1)]
are less than or equal to A[i], the entries in A[(i + 1)..(j − 1)] are greater than or equal
to A[i] and less than or equal to A[j], and the entries in A[(j + 1)..n] are greater than or
equal to A[j].

Please present your extension in adequate pseudocode and make assumptions wherever
necessary. Give an analysis of its time complexity. The more efficient your algorithm is,
the more points you will be credited for this problem.

Solution.

Partition3(X, Left, Right);

begin

if X[Left] > X[Right] then

swap(X[Left], X[Right])

end if;

pivot1 := X[Left];

pivot2 := X[Right];

i := Left;

k := Right;

j := Left + 1;

while (j < k) do

if X[j] < pivot1 then

i := i + 1;

swap(X[i], X[j]);

j := j + 1;

else

if X[j] > pivot2 then

k := k - 1;
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swap(X[j], X[k]);

else

j := j + 1;

end if;

end if;

end while;

swap(X[Left], X[i]);

swap(X[Right], X[k]);

end

Each iteration of the main (while) loop, taking a constant amount of time, either incre-
ments j or decremets k by 1 and hence shortens the distance between j and k by 1. As
the initial distance between j and k equals Right − (Left + 1), at most n − 2 iterations
will be executed. It follows that the algorithm is linear-time. 2

8. Below is a variant of the insertion sort algorithm.

Algorithm Insertion Sort (A,n);
begin

for i := 2 to n do
x := A[i];
j := i;
while j > 1 and A[j − 1] > x do

A[j] := A[j − 1];
j := j − 1;

end while
A[j] := x;

end for
end

Draw a decision tree of the algorithm for the case of A[1..3], i.e., n = 3. In the decision
tree, you must indicate (1) which two elements of the original input array are compared
in each internal node and (2) the sorting result in each leaf. Please use X1, X2, X3 (not
A[1], A[2], A[3]) to refer to the elements (in this order) of the original input array.

Solution.

X1 : X2

X1 : X3

X2 : X3

X3X2X1X2X3X1

X2X1X3

X2 : X3

X1 : X3

X3X1X2X1X3X2

X1X2X3

≤ >

2

9. Consider the text data compression problem we have discussed in class; the problem
statement is given below.
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Given a text (a sequence of characters), find an encoding for the characters
that satisfies the prefix constraint and that minimizes the total number of bits
needed to encode the text.

Prove that the two characters with the lowest frequencies must be among the deepest
leaves (farthest from the root) in the final code tree.

Solution. Denote the characters in the text by c1, c2, · · ·, cn and their frequencies by f1,
f2, · · ·, fn. Given an encoding E in which a bit string si represents ci, the length (number
of bits) of the text encoded by using E is

∑n
i=1 |si| · fi. In the code tree corresponding

to E, the depth of the leaf representing character ci equals the length of the encoding si
for ci. We observe that at the deepest level in the code there must be at least two leaves;
otherwise, we may remove the only leaf and take its parent as a new leaf, obtaining a
better code tree.

Assume toward a contradiction that one of the two characters, say cj , with the lowest
frequencies is at a level shallower than that of a character, say ck, with a higher frequency
such that |sj | < |sk|. Since |sj | < |sk| and fj < fk, sj · fj + sk · fk > sj · fk + sk · fj . It
follows that

n∑
i=1

|si| · fi > (
n∑

i=1,i 6=j,i6=k

|si| · fi) + sj · fk + sk · fj .

If we swap the characters cj and ck, then we will get a better code tree, a contradiction.
2

10. The next table is a precomputed table that plays a critical role in the KMP algorithm.
For every position j of the second input string b1b2 . . . bm (to be matched against the first
input string), the value of next [j] tells the length of the longest proper prefix that is equal
to a suffix of b1b2 . . . bj−1; the value of next [0] is set to −1 to fit in the KMP algroithm.
For each of the following instances of next , give a string of letters a and b that gives rise
to the table or argue that no string can possibly produce the table.

(a)

1 2 3 4 5 6 7 8 9

−1 0 0 1 1 2 3 4 5

Solution. There are a few strings that may produce this next table, e.g., abaabaaba
or abaabaabb. 2

(b)

1 2 3 4 5 6 7 8 9

−1 0 1 2 3 5 1 2 3

Solution. No string can possibly give arise to this next table, as the value of next [6] should
be no more than 4 (but it is 5 here). 2

Appendix

• Below is an algorithm for determining whether a solution to the (original) Knapsack
Problem exists.
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Algorithm Knapsack (S,K);
begin

P [0, 0].exist := true;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := false

else if k − S[i] ≥ 0 then
if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := true

end

• Below is an alternative algorithm for partition in the Quicksort algorithm:

Partition (X,Left ,Right);
begin

pivot := X[left ];
i := Left ;
for j := Left + 1 to Right do

if X[j] < pivot then i := i + 1;
swap(X[i], X[j]);

Middle := i;
swap(X[Left ], X[Middle])

end
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