Reduction

(Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Introduction

The basic idea of reduction is to solve a problem with the solution to another "similar" problem.
When Problem A can be reduced (efficiently) to Problem B, there are two consequences:

* A solution to Problem B may be used to solve Problem A.
* If A is known to be "hard", then B is also necessarily "hard".

One should avoid the pitfall of reducing a problem to another that is too general or too hard.

Matching

Given an undirected graph $G=(V, E)$, a matching is a set of edges that do not share a common vertex.

- A maximum matching is one with the maximum number of edges.
A maximal matching is one that cannot be extended by adding any other edge.

Bipartite Matching

- A bipartite graph $G=(V, E, U)$ is a graph with $V \cup U$ as the set of vertices and E as the set of edges such that
, V and U are disjoint and
The edges in E connect vertices from V to vertices in U.

Problem

Given a bipartite graph $G=(V, E, U)$, find a maximum matching in G.

Networks

Consider a directed graph, or network, $G=(V, E)$ with two distinguished vertices: s (the source) with indegree 0 and t (the sink) with outdegree 0 .

- Each edge e in E has an associated positive weight $c(e)$, called the capacity of e.

The Network Flow Problem

A flow is a function f on E that satisfies the following two conditions:

$$
\begin{aligned}
& \text { 1. } 0 \leq f(e) \leq c(e) . \\
& \text { 2. } \sum_{u} f(u, v)=\sum_{w} f(v, w) \text {, for all } v \in V-\{s, t\} \text {. }
\end{aligned}
$$

The network flow problem is to maximize the flow f for a given network G.

Bipartite Matching to Network Flow

Figure 7.39 Reducing bipartite matching to network flow (the directions of all the edges are from left to right).

Source: [Manber 1989].

Bipartite Matching to Network Flow (cont.)

- Mapping from the input $G=(V, E, U)$ of the bipartite matching problem to the input $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ and c of the network flow problem:
The network is $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where
(2) $V^{\prime}=\{s\} \cup V \cup U \cup\{t\}$
(2) $E^{\prime}=\{(s, v) \mid v \in V\} \cup E \cup\{(u, t) \mid u \in U\}$
* The capacity for every $e \in E^{\prime}$ is 1 , i.e., $\forall e \in E^{\prime}, c(e)=1$.
- Correspondence between the two solutions
, A maximum flow f in G^{\prime} defines a maximum matching M_{f} in G.
A maximum matching M in G induces a maximum flow f_{M} in G^{\prime}.

Notations

Let \bar{v} denote a vector $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ of n constants or n variables.
In the following, $\bar{a}, \bar{b}, \bar{c}$, and \bar{e} are vectors of n constants.

- And, \bar{x} and \bar{y} are vectors of n variables.

The (inner or dot) product $\bar{a} \cdot \bar{x}$ of two vectors \bar{a} and \bar{x} is defined as follows:

$$
\bar{a} \cdot \bar{x}=\sum_{i=1}^{n} a_{i} \cdot x_{i}
$$

Linear Programming

- Objective function:

$$
\bar{c} \cdot \bar{x}
$$

Equality constraints:

$$
\begin{aligned}
\bar{e}_{1} \cdot \bar{x} & =d_{1} \\
\bar{e}_{2} \cdot \bar{x} & =d_{2} \\
\vdots & \\
\bar{e}_{m} \cdot \bar{x} & =d_{m}
\end{aligned}
$$

- Inequality constraints may be turned into equality constraints by introducing slack variables.
-Non-negative constraints: $x_{j} \geq 0$, for all j in P, where P is a subset of $\{1,2, \ldots, n\}$.
The goal is to maximize (or minimize) the value of the objective function, subject to the equality constraints.

Network Flow to Linear Programming

From the input $G=(V, E)$ and c of the network flow problem to the objective function and constraints of linear programming:
Let $x_{1}, x_{2}, \ldots, x_{n}$ represent the flow values of the n edges.

- Objective function:

$$
\sum_{i \in S} x_{i}
$$

where S is the set of edges leaving the source.

- Inequality constraints:

$$
x_{i} \leq c_{i} \text {, for all } i, 1 \leq i \leq n
$$

where c_{i} is the capacity of edge i.

- Equality constraints:

$$
\sum_{i \text { leaves } v} x_{i}-\sum_{j \text { enters } v} x_{j}=0, \text { for every } v \in V \backslash\{s, t\}
$$

Non-negative constraints: $x_{i} \geq 0$, for all $i, 1 \leq i \leq n$.

