

Mathematical Induction (Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

Mathematical Induction

Algorithms 2018 1 / 36

3

イロト イポト イヨト イヨト

The Standard Induction Principle

- Let T be a theorem that includes a parameter n whose value can be any natural number.
- Here, natural numbers are positive integers, i.e., 1, 2, 3, ..., excluding 0 (sometimes we may include 0).
- To prove *T*, it suffices to prove the following two conditions:
 - * T holds for n = 1. (Base case)
 - For every n > 1, if T holds for n 1, then T holds for n. (Inductive step)
- The assumption in the inductive step that T holds for n − 1 is called the *induction hypothesis*.

イロト イポト イヨト イヨト

A Simple Proof by Induction

Theorem (2.1)

For all natural numbers x and n, $x^n - 1$ is divisible by x - 1.

Proof.

(Suggestion: try to follow the structure of this proof when you present a proof by induction.) The proof is by induction on n. Base case (n = 1): x - 1 is trivially divisible by x - 1. Inductive step (n > 1): $x^n - 1 = x(x^{n-1} - 1) + (x - 1)$. $x^{n-1} - 1$ is divisible by x - 1 from the induction hypothesis and x - 1 is divisible by x - 1. Hence, $x^n - 1$ is divisible by x - 1.

Note: *a* is divisible by *b* if there exists an integer *c* such that $a = b \times c$.

Yih-Kuen Tsay (IM.NTU)

Mathematical Induction

Variants of Induction Principle

Theorem

If a statement T, with a parameter n, is true for n = 1, and if, for every $n \ge 1$, the truth of T for n implies its truth for n + 1, then T is true for all natural numbers.

Variants of Induction Principle

Theorem

If a statement T, with a parameter n, is true for n = 1, and if, for every $n \ge 1$, the truth of T for n implies its truth for n + 1, then T is true for all natural numbers.

Theorem (Strong Induction)

If a statement T, with a parameter n, is true for n = 1, and if, for every n > 1, the truth of T for all natural numbers < n implies its truth for n, then T is true for all natural numbers.

Variants of Induction Principle

Theorem

If a statement T, with a parameter n, is true for n = 1, and if, for every $n \ge 1$, the truth of T for n implies its truth for n + 1, then T is true for all natural numbers.

Theorem (Strong Induction)

If a statement T, with a parameter n, is true for n = 1, and if, for every n > 1, the truth of T for all natural numbers < n implies its truth for n, then T is true for all natural numbers.

Theorem

If a statement T, with a parameter n, is true for n = 1 and for n = 2, and if, for every n > 2, the truth of T for n - 2 implies its truth for n, then T is true for all natural numbers.

Yih-Kuen Tsay (IM.NTU)

イロト 不得下 イヨト イヨト 二日

Design by Induction: First Glimpse

- The selection sort, for instance, can be seen as constructed using design by induction:
 - 1. When there is only one element, we are done.
 - 2. When there are n (> 1) elements, we
 - 2.1 select the largest element,
 - 2.2 sort the remaining n-1 elements, and
 - 2.3 append the largest element to the sorted n-1 elements.

Design by Induction: First Glimpse

- The selection sort, for instance, can be seen as constructed using design by induction:
 - 1. When there is only one element, we are done.
 - 2. When there are n (> 1) elements, we
 - 2.1 select the largest element,
 - 2.2 sort the remaining n-1 elements, and
 - 2.3 append the largest element to the sorted n-1 elements.
- This looks simple enough, but the selection sort isn't very efficient.
- How can we obtain a more efficient algorithm via design by induction?

イロト 不得下 イヨト イヨト

Design by Induction: First Glimpse

- The selection sort, for instance, can be seen as constructed using design by induction:
 - 1. When there is only one element, we are done.
 - 2. When there are n (> 1) elements, we
 - 2.1 select the largest element,
 - 2.2 sort the remaining n-1 elements, and
 - 2.3 append the largest element to the sorted n-1 elements.
- This looks simple enough, but the selection sort isn't very efficient.
- How can we obtain a more efficient algorithm via design by induction?
- To see the power of design by induction, let's look at a less familiar example.

Problem

Given two sorted arrays A[1..m] and B[1..n] of positive integers, find their smallest common element; returns 0 if no common element is found.

- I Assume the elements of each array are in ascending order.
- **Obvious solution**: take one element at a time from *A* and find out if it is also in *B* (or the other way around).

Problem

Given two sorted arrays A[1..m] and B[1..n] of positive integers, find their smallest common element; returns 0 if no common element is found.

- Assume the elements of each array are in ascending order.
- Obvious solution: take one element at a time from A and find out if it is also in B (or the other way around).
- How efficient is this solution?
- 😚 Can we do better?

- There are m + n elements to begin with.
- Can we pick out one element such that either (1) it is the element we look for or (2) it can be ruled out from subsequent searches?
- In the second case, we are left with the same problem but with m + n 1 elements?

- Solution There are m + n elements to begin with.
- Can we pick out one element such that either (1) it is the element we look for or (2) it can be ruled out from subsequent searches?
- In the second case, we are left with the same problem but with m + n 1 elements?
- Idea: compare the current first elements of A and B.
 - 1. If they are equal, then we are done.
 - 2. If not, the smaller one cannot be the smallest common element.

Below is the complete solution:

Algorithm

```
Algorithm SCE(A, m, B, n) : integer;
begin
if m = 0 or n = 0 then SCE := 0;
if A[1] = B[1] then
SCE := A[1];
else if A[1] < B[1] then
SCE := SCE(A[2..m], m - 1, B, n);
else SCE := SCE(A, m, B[2..n], n - 1);
end
```

Yih-Kuen Tsay (IM.NTU)

Computations carried out by a computer/machine can, in essence, be understood as mathematical functions.

< ロ > < 同 > < 三 > < 三

- Computations carried out by a computer/machine can, in essence, be understood as mathematical functions.
- 📀 To solve practical problems with computers,
 - objects/things in a practical domain must be modeled as (mostly discrete) mathematical structures/sets, and
 - various manipulations of the objects become functions on the corresponding mathematical structures.

- Computations carried out by a computer/machine can, in essence, be understood as mathematical functions.
- 😚 To solve practical problems with computers,
 - objects/things in a practical domain must be modeled as (mostly discrete) mathematical structures/sets, and
 - various manipulations of the objects become functions on the corresponding mathematical structures.
- Many mathematical structures are naturally defined by induction.

(日) (四) (日) (日) (日)

- Computations carried out by a computer/machine can, in essence, be understood as mathematical functions.
- 😚 To solve practical problems with computers,
 - objects/things in a practical domain must be modeled as (mostly discrete) mathematical structures/sets, and
 - various manipulations of the objects become functions on the corresponding mathematical structures.
- Many mathematical structures are naturally defined by induction.
- Functions on inductive structures are also naturally defined by induction (recursion).

・ロト ・ 一日 ト ・ 日 ト

Recursively/Inductively-Defined Sets

- The natural numbers (including 0):
 - 1. Base case: 0 is a natural number.
 - 2. Inductive step: if n is a natural number, then n + 1 is also a natural number.

< ロ > < 同 > < 三 > < 三

Recursively/Inductively-Defined Sets

- The natural numbers (including 0):
 - 1. Base case: 0 is a natural number.
 - 2. Inductive step: if n is a natural number, then n + 1 is also a natural number.
- Binary trees:
 - 1. Base case: the empty tree is a binary tree.
 - 2. Inductive step: if L and R are binary trees, then a node with L and R as the left and the right children is also a binary tree.

< □ > < 同 > < 回 > < Ξ > < Ξ

Recursively/Inductively-Defined Sets

- The natural numbers (including 0):
 - 1. Base case: 0 is a natural number.
 - 2. Inductive step: if n is a natural number, then n + 1 is also a natural number.
 - Binary trees:
 - 1. Base case: the empty tree is a binary tree.
 - 2. Inductive step: if *L* and *R* are binary trees, then a node with *L* and *R* as the left and the right children is also a binary tree.
- Nonempty binary trees:
 - 1. Base case: a single root node (without any child) is a binary tree.
 - 2. Inductive step: if L and R are binary trees, then a node with L as the left child and/or R as the right child is also a binary tree.

Yih-Kuen Tsay (IM.NTU)

Structural Induction

- Structural induction is a generalization of mathematical induction on the natural numbers.
- It is used to prove that some proposition P(x) holds for all x of some sort of recursively/inductively defined structure such as binary trees.

Structural Induction

- Structural induction is a generalization of mathematical induction on the natural numbers.
- It is used to prove that some proposition P(x) holds for all x of some sort of recursively/inductively defined structure such as binary trees.
- Proof by structural induction:
 - 1. Base case: the proposition holds for all the minimal structures.
 - 2. Inductive step: if the proposition holds for the immediate substructures of a certain structure *S*, then it also holds for *S*.

Another Simple Example

Theorem (2.4)

If n is a natural number and 1 + x > 0, then $(1 + x)^n \ge 1 + nx$.

Below are the key steps:

$$\begin{array}{rl} (1+x)^{n+1} &= (1+x)(1+x)^n \\ & \{ \text{induction hypothesis and } 1+x > 0 \} \\ &\geq (1+x)(1+nx) \\ &= 1+(n+1)x+nx^2 \\ &\geq 1+(n+1)x \end{array}$$

The main point here is that we should be clear about how conditions listed in the theorem are used.

Yih-Kuen Tsay (IM.NTU)

Mathematical Induction

Algorithms 2018 12 / 36

Proving vs. Computing

Theorem (2.2)

 $1+2+\cdots+n=\frac{n(n+1)}{2}.$

This can be easily proven by induction.
 Key steps: 1 + 2 + ··· + n + (n + 1) = (n(n+1))/2 + (n + 1) = (n^2+n+2n+2)/2 = (n^2+3n+2)/2 = (n+1)((n+1)+1)/2 = (n+1)((n+1)+1)/2.

Proving vs. Computing

Theorem (2.2)

 $1+2+\cdots+n=\frac{n(n+1)}{2}.$

This can be easily proven by induction.

• Key steps:
$$1 + 2 + \dots + n + (n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{n^2 + n + 2n + 2}{2} = \frac{n^2 + 3n + 2}{2} = \frac{(n+1)(n+2)}{2} = \frac{(n+1)((n+1)+1)}{2}.$$

- Induction seems to be useful only if we already know the sum.
- What if we are asked to compute the sum of a series?

Proving vs. Computing

Theorem (2.2)

 $1+2+\cdots+n=\frac{n(n+1)}{2}.$

This can be easily proven by induction.
 Key steps: 1 + 2 + ··· + n + (n + 1) = n(n+1)/2 + (n + 1) = n^2 + n + 2n + 2 = n^2 + 3n + 2 = (n+1)(n+2)/2 = (n+1)((n+1)+1)/2.
 Induction seems to be useful only if we already know the sum.
 What if we are asked to compute the sum of a series?

• Let's try $8 + 13 + 18 + 23 + \dots + (3 + 5n)$.

Yih-Kuen Tsay (IM.NTU)

Proving vs. Computing (cont.)

- Idea: guess and then verify by an inductive proof!
- The sum should be of the form $an^2 + bn + c$.
- By checking n = 1, 2, and 3, we get $\frac{5}{2}n^2 + \frac{11}{2}n$.
- Verify this for all n (1, 2, 3, and beyond), i.e., the following theorem, by induction.

Theorem (2.3)

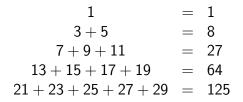
$$8+13+18+23+\cdots+(3+5n)=\frac{5}{2}n^2+\frac{11}{2}n.$$

Yih-Kuen Tsay (IM.NTU)

Mathematical Induction

Algorithms 2018 14 / 36

A Summation Problem



Theorem

The sum of row n in the triangle is n^3 .

Yih-Kuen Tsay (IM.NTU)

Mathematical Induction

Algorithms 2018 15 / 36

- 3

(日) (同) (日) (日) (日)

A Summation Problem

Theorem

The sum of row n in the triangle is n^3 .

The base case is clearly correct. For the inductive step, examine the difference between rows i + 1 and $i \dots$

Yih-Kuen Tsay (IM.NTU)

Mathematical Induction

Algorithms 2018 15 / 36

A Summation Problem (cont.)

Suppose row i starts with an odd number j whose exact value is not important.

So, ? (the last number of row i + 1) must be $3i^2 + 3i + 1 - 2i \times i = i^2 + 3i + 1$, if the conjecture is correct.

Lemma

The last number in row i + 1 is $i^2 + 3i + 1$.

Yih-Kuen Tsay (IM.NTU)

Mathematical Induction

Algorithms 2018 16 / 36

イロト 不得下 イヨト イヨト 二日

A Simple Inequality

Theorem (2.7) $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} < 1$, for all $n \ge 1$.

There are at least two ways to select *n* terms from n + 1 terms. 1. $(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}) + \frac{1}{2^{n+1}}$.

A Simple Inequality

Theorem (2.7) $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} < 1$, for all $n \ge 1$.

• There are at least two ways to select *n* terms from n + 1 terms. 1. $(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}) + \frac{1}{2^{n+1}}$. 2. $\frac{1}{2} + (\frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} + \frac{1}{2^{n+1}})$.

The second one leads to a successful inductive proof:

$$\frac{1}{2} + \left(\frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} + \frac{1}{2^{n+1}}\right)$$

$$= \frac{1}{2} + \frac{1}{2}\left(\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}} + \frac{1}{2^n}\right)$$

$$< \frac{1}{2} + \frac{1}{2}$$

$$= 1$$

Yih-Kuen Tsay (IM.NTU)

Algorithms 2018 17 / 36

Euler's Formula

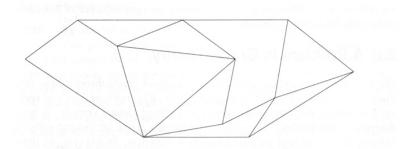


Figure 2.2 A planar map with 11 vertices, 19 edges, and 10 faces.

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU)

Mathematical Induction

Algorithms 2018 18 / 36

Euler's Formula (cont.)

Theorem (2.8)

The number of vertices (V), edges (E), and faces (F) in an arbitrary connected planar graph are related by the formula V + F = E + 2.

イロト 不得下 イヨト イヨト 二日

Euler's Formula (cont.)

Theorem (2.8)

The number of vertices (V), edges (E), and faces (F) in an arbitrary connected planar graph are related by the formula V + F = E + 2.

The proof is by induction on the number of faces. Base case (F = 1): connected planar graphs with only one face are trees. So, we need to prove the equality V + 1 = E + 2 or V - 1 = E for trees, namely the following lemma:

Lemma

A tree with V vertices has V - 1 edges.

Inductive step (F > 1): for a graph with more than one faces, there must be a cycle in the graph. Remove one edge from the cyle ...

Yih-Kuen Tsay (IM.NTU)

Mathematical Induction

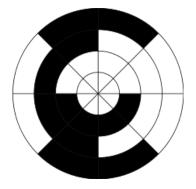
< 口 > < 同 > < 三 > < 三

Gray Codes

- A Gray code (after Frank Gray) for n objects is a binary-encoding scheme for naming the n objects such that the n names can be arranged in a circular list where any two adjacent names, or code words, differ by only one bit.
 - Examples:

00, 01, 11, 10
000, 001, 011, 010, 110, 111, 101, 100
000, 001, 011, 111, 101, 100

A Gray Code in Picture



A rotary encoder using a 3-bit Gray code.

Source: Wikipedia.

Yih-Kuen Tsay (IM.NTU)

Mathematical Induction

Algorithms 2018 21 / 36

3

Theorem (2.10)

There exist Gray codes of length $\frac{k}{2}$ for any positive even integer k.

Yih-Kuen Tsay (IM.NTU)

Mathematical Induction

Algorithms 2018 22 / 36

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Theorem (2.10)

There exist Gray codes of length $\frac{k}{2}$ for any positive even integer k.

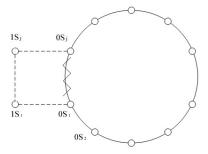


Figure 2.3 Constructing a Gray code of size 2k

Source: [Manber 1989] (adapted).

Note: j in the figure equals 2(k-1) and hence j+2 equals 2k.

Yih-Kuen Tsay (IM.NTU)

Mathematical Induction

Algorithms 2018 22 / 36

Theorem (2.10+)

There exist Gray codes of length $\log_2 k$ for any positive integer k that is a power of 2.

(日) (四) (王) (王) (王)

IM

Gray Codes (cont.)

Theorem (2.10+)

There exist Gray codes of length $\log_2 k$ for any positive integer k that is a power of 2.

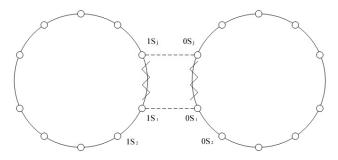


Figure 2.4 Constructing a Gray code from two smaller ones

Source: [Manber 1989] (adapted).

Yih-Kuen Tsay (IM.NTU)

Mathematical Induction

Algorithms 2018 23 / 36

- 📀 00, 01, 11, 10 (for 2² objects)
- 📀 000, 001, 011, 010 (add a 0)
- 📀 100, 101, 111, 110 (add a 1)
- Combine the preceding two codes (read the second in reversed order):
 000, 001, 011, 010, 110, 111, 101, 100 (for 2³ objects)

• • • • • • • • • • • •

Theorem (2.11-)

There exist Gray codes of length $\lceil \log_2 k \rceil$ for any positive even integer k.

Yih-Kuen Tsay (IM.NTU)

Mathematical Induction

Algorithms 2018 25 / 36

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Theorem (2.11-)

There exist Gray codes of length $\lceil \log_2 k \rceil$ for any positive even integer k.

To generalize the result and ease the proof, we allow a Gray code to be *open* where the last name and the first name may differ by more than one bit.

Theorem (2.11)

There exist Gray codes of length $\lceil \log_2 k \rceil$ for any positive integer $k \ge 2$. The Gray codes for the even values of k are closed, and the Gray codes for odd values of k are open.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (2.11)

There exist Gray codes of length $\lceil \log_2 k \rceil$ for any positive integer $k \ge 2$. The Gray codes for the even values of k are closed, and the Gray codes for odd values of k are open.

We in effect make the theorem stronger. A stronger theorem may be easier to prove, as we have a stronger induction hypothesis.

- 00, 01, 11 (open Gray code for 3 objects)
- 😚 000, 001, 011 (add a 0)
- 📀 100, 101, 111 (add a 1)
- Combine the preceding two codes (read the second in reversed order):
 000, 001, 011, 111, 101, 100 (closed Gray code for 6 objects)

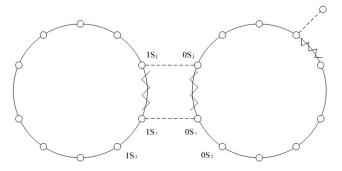


Figure 2.5 Constructing an open Gray code

Source: [Manber 1989] (adapted).

Yih-Kuen Tsay (IM.NTU)

Mathematical Induction

Algorithms 2018 28 / 36

(日)

Arithmetic vs. Geometric Mean

Theorem (2.13) If $x_1, x_2, ..., x_n$ are all positive numbers, then $(x_1x_2 \cdots x_n)^{\frac{1}{n}} \leq \frac{x_1 + x_2 + \cdots + x_n}{n}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Arithmetic vs. Geometric Mean

Theorem (2.13)

If
$$x_1, x_2, \dots, x_n$$
 are all positive numbers, then
 $(x_1x_2\cdots x_n)^{rac{1}{n}} \leq rac{x_1+x_2+\cdots+x_n}{n}.$

First use the standard induction to prove the case of powers of 2 and then use the reversed induction principle below to prove for all natural numbers.

Theorem (Reversed Induction Principle)

If a statement P, with a parameter n, is true for an infinite subset of the natural numbers, and if, for every n > 1, the truth of P for n implies its truth for n - 1, then P is true for all natural numbers.

Yih-Kuen Tsay (IM.NTU)

イロト 不得 トイヨト イヨト 二日

- For all powers of 2, i.e., $n = 2^k$, $k \ge 1$: by induction on k.
- Solution Base case: $(x_1x_2)^{\frac{1}{2}} \leq \frac{x_1+x_2}{2}$, squaring both sides

Yih-Kuen Tsay (IM.NTU)

Mathematical Induction

Algorithms 2018 30 / 36

- For all powers of 2, i.e., $n = 2^k$, $k \ge 1$: by induction on k.
- Base case: $(x_1x_2)^{\frac{1}{2}} \leq \frac{x_1+x_2}{2}$, squaring both sides
- Inductive step:

$$(x_1x_2\cdots x_{2^{k+1}})^{\frac{1}{2^{k+1}}}$$

(日) (同) (日) (日) (日)

- For all powers of 2, i.e., $n = 2^k$, $k \ge 1$: by induction on k.
- Base case: $(x_1x_2)^{\frac{1}{2}} \leq \frac{x_1+x_2}{2}$, squaring both sides
- 😚 Inductive step:

$$(x_1 x_2 \cdots x_{2^{k+1}})^{\frac{1}{2^{k+1}}} = [(x_1 x_2 \cdots x_{2^{k+1}})^{\frac{1}{2^k}}]^{\frac{1}{2}}$$

(日) (同) (日) (日) (日)

- For all powers of 2, i.e., $n = 2^k$, $k \ge 1$: by induction on k.
- Base case: $(x_1x_2)^{\frac{1}{2}} \leq \frac{x_1+x_2}{2}$, squaring both sides
- Inductive step:

$$(x_1 x_2 \cdots x_{2^{k+1}})^{\frac{1}{2^{k+1}}}$$

= $[(x_1 x_2 \cdots x_{2^{k+1}})^{\frac{1}{2^k}}]^{\frac{1}{2}}$
= $[(x_1 x_2 \cdots x_{2^k})^{\frac{1}{2^k}} (x_{2^k+1} x_{2^k+2} \cdots x_{2^{k+1}})^{\frac{1}{2^k}}]^{\frac{1}{2}}$

- For all powers of 2, i.e., $n = 2^k$, $k \ge 1$: by induction on k.
- Base case: $(x_1x_2)^{\frac{1}{2}} \leq \frac{x_1+x_2}{2}$, squaring both sides
- 😚 Inductive step:

$$\begin{array}{l} (x_1 x_2 \cdots x_{2^{k+1}})^{\frac{1}{2^{k+1}}} \\ = & [(x_1 x_2 \cdots x_{2^{k+1}})^{\frac{1}{2^k}}]^{\frac{1}{2}} \\ = & [(x_1 x_2 \cdots x_{2^k})^{\frac{1}{2^k}} (x_{2^{k}+1} x_{2^{k}+2} \cdots x_{2^{k+1}})^{\frac{1}{2^k}}]^{\frac{1}{2}} \\ \leq & \frac{(x_1 x_2 \cdots x_{2^k})^{\frac{1}{2^k}} + (x_{2^{k}+1} x_{2^{k}+2} \cdots x_{2^{k+1}})^{\frac{1}{2^k}}}{2}, \text{ from the base case} \end{array}$$

- For all powers of 2, i.e., $n = 2^k$, $k \ge 1$: by induction on k.
- Solution Base case: $(x_1x_2)^{\frac{1}{2}} \leq \frac{x_1+x_2}{2}$, squaring both sides
- Inductive step:

$$\begin{array}{l} (x_1 x_2 \cdots x_{2^{k+1}})^{\frac{1}{2^{k+1}}} \\ = & [(x_1 x_2 \cdots x_{2^{k+1}})^{\frac{1}{2^k}}]^{\frac{1}{2}} \\ = & [(x_1 x_2 \cdots x_{2^k})^{\frac{1}{2^k}} (x_{2^{k}+1} x_{2^{k}+2} \cdots x_{2^{k+1}})^{\frac{1}{2^k}}]^{\frac{1}{2}} \\ \leq & \frac{(x_1 x_2 \cdots x_{2^k})^{\frac{1}{2^k}} + (x_{2^{k}+1} x_{2^{k}+2} \cdots x_{2^{k+1}})^{\frac{1}{2^k}}}{2}, \text{ from the base case} \\ \leq & \frac{\frac{x_1 + x_2 + \cdots + x_{2^k}}{2^k} + \frac{x_{2^k+1} + x_{2^k+2} + \cdots + x_{2^{k+1}}}{2^k}}{2}, \text{ from the Ind. Hypo.} \end{array}$$

- For all powers of 2, i.e., $n = 2^k$, $k \ge 1$: by induction on k.
- Solution Base case: $(x_1x_2)^{\frac{1}{2}} \leq \frac{x_1+x_2}{2}$, squaring both sides
- Inductive step:

$$\begin{array}{l} (x_1 x_2 \cdots x_{2^{k+1}})^{\frac{1}{2^{k+1}}} \\ = & [(x_1 x_2 \cdots x_{2^{k+1}})^{\frac{1}{2^k}}]^{\frac{1}{2}} \\ = & [(x_1 x_2 \cdots x_{2^k})^{\frac{1}{2^k}} (x_{2^{k}+1} x_{2^{k}+2} \cdots x_{2^{k+1}})^{\frac{1}{2^k}}]^{\frac{1}{2}} \\ \leq & \frac{(x_1 x_2 \cdots x_{2^k})^{\frac{1}{2^k}} + (x_{2^{k}+1} x_{2^{k}+2} \cdots x_{2^{k+1}})^{\frac{1}{2^k}}}{2}, \text{ from the base case} \\ \leq & \frac{\frac{x_1 + x_2 + \cdots + x_{2^k}}{2^k} + \frac{x_{2^k+1} + x_{2^k+2} + \cdots + x_{2^{k+1}}}{2^k}}{2}, \text{ from the Ind. Hypo.} \\ = & \frac{x_1 + x_2 + \cdots + x_{2^{k+1}}}{2^{k+1}} \end{array}$$

- For all natural numbers: by reversed induction on *n*.
 - Base case: the theorem holds for all powers of 2.

• • • • • • • • • • • •

- For all natural numbers: by reversed induction on *n*.
- Base case: the theorem holds for all powers of 2.
- 😚 Inductive step: observe that

$$\frac{x_1 + x_2 + \dots + x_{n-1}}{n-1} = \frac{x_1 + x_2 + \dots + x_{n-1} + \frac{x_1 + x_2 + \dots + x_{n-1}}{n-1}}{n}.$$

• • • • • • • • • • • •

$$(x_1 x_2 \cdots x_{n-1} (\frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}))^{\frac{1}{n}} \leq \frac{x_1 + x_2 + \cdots + x_{n-1} + \frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}}{n}$$

(from the Ind. Hypo.)

Yih-Kuen Tsay (IM.NTU)

Mathematical Induction

Algorithms 2018 32 / 36

3

(日) (周) (日) (日)

IM

$$(x_1 x_2 \cdots x_{n-1} (\frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}))^{\frac{1}{n}} \leq \frac{x_1 + x_2 + \cdots + x_{n-1} + \frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}}{n}$$
(from the Ind. Hypo.)
$$(x_1 x_2 \cdots x_{n-1} (\frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}))^{\frac{1}{n}} \leq \frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}$$

Algorithms 2018 32 / 36

3

(日) (周) (日) (日)

$$(x_1 x_2 \cdots x_{n-1} (\frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}))^{\frac{1}{n}} \leq \frac{x_1 + x_2 + \cdots + x_{n-1} + \frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}}{n}$$
(from the Ind. Hypo.)
$$(x_1 x_2 \cdots x_{n-1} (\frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}))^{\frac{1}{n}} \leq \frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}$$

$$(x_1 x_2 \cdots x_{n-1} (\frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1})) \leq (\frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1})^n$$

Yih-Kuen Tsay (IM.NTU)

Mathematical Induction

Algorithms 2018 32 / 36

3

(日) (周) (日) (日)

IM

$$(x_1 x_2 \cdots x_{n-1} (\frac{x_1 + x_2 + \dots + x_{n-1}}{n-1}))^{\frac{1}{n}} \leq \frac{x_1 + x_2 + \dots + x_{n-1} + \frac{x_1 + x_2 + \dots + x_{n-1}}{n-1}}{n}$$
(from the Ind. Hypo.)
$$(x_1 x_2 \cdots x_{n-1} (\frac{x_1 + x_2 + \dots + x_{n-1}}{n-1}))^{\frac{1}{n}} \leq \frac{x_1 + x_2 + \dots + x_{n-1}}{n-1}$$
$$(x_1 x_2 \cdots x_{n-1} (\frac{x_1 + x_2 + \dots + x_{n-1}}{n-1})) \leq (\frac{x_1 + x_2 + \dots + x_{n-1}}{n-1})^n$$
$$(x_1 x_2 \cdots x_{n-1}) \leq (\frac{x_1 + x_2 + \dots + x_{n-1}}{n-1})^{n-1}$$

Yih-Kuen Tsay (IM.NTU)

Mathematical Induction

Algorithms 2018 32 / 36

3

(日) (周) (日) (日)

IM

$$(x_1 x_2 \cdots x_{n-1} (\frac{x_1 + x_2 + \dots + x_{n-1}}{n-1}))^{\frac{1}{n}} \leq \frac{x_1 + x_2 + \dots + x_{n-1} + \frac{x_1 + x_2 + \dots + x_{n-1}}{n-1}}{n}$$
(from the Ind. Hypo.)

$$(x_1 x_2 \cdots x_{n-1} (\frac{x_1 + x_2 + \dots + x_{n-1}}{n-1}))^{\frac{1}{n}} \leq \frac{x_1 + x_2 + \dots + x_{n-1}}{n-1}$$
($x_1 x_2 \cdots x_{n-1} (\frac{x_1 + x_2 + \dots + x_{n-1}}{n-1})$) $\leq (\frac{x_1 + x_2 + \dots + x_{n-1}}{n-1})^n$ ($x_1 x_2 \cdots x_{n-1}$) $\leq (\frac{x_1 + x_2 + \dots + x_{n-1}}{n-1})^{n-1}$ ($x_1 x_2 \cdots x_{n-1}$))^{\frac{1}{n-1}} \leq (\frac{x_1 + x_2 + \dots + x_{n-1}}{n-1})

Yih-Kuen Tsay (IM.NTU)

Mathematical Induction

Algorithms 2018 32 / 36

3

(日) (周) (日) (日)

Loop Invariants

- An *invariant* at some point of a program is an assertion that holds whenever execution of the program reaches that point.
- Invariants are a bridge between the static text of a program and its dynamic computation.

(日) (同) (日) (日)

Loop Invariants

- An *invariant* at some point of a program is an assertion that holds whenever execution of the program reaches that point.
- Invariants are a bridge between the static text of a program and its dynamic computation.
- An invariant at the front of a while loop is called a *loop invariant* of the while loop.
- A loop invariant is formally established by induction.
 - Base case: the assertion holds right before the loop starts.
 - iteration $(i \ge 1)$, it holds again after the iteration.

A Variant of Euclid's Algorithm

Algorithm

Algorithm myEuclid (m, n); begin // assume that m > 0 and n > 0x := m;y := n;while $x \neq y$ do if x < y then swap(x,y); x := x - y;od . . . end

where swap(x,y) exchanges the values of x and y.

Yih-Kuen Tsay (IM.NTU)

Mathematical Induction

Algorithms 2018 34 / 36

= > = ∽a@

A Variant of Euclid's Algorithm (cont.)

Theorem (Correctness of myEuclid)

When Algorithm myEuclid terminates, x or y stores the value of gcd(m, n) (assuming that m, n > 0 initially).

イロト 不得下 イヨト イヨト 二日

A Variant of Euclid's Algorithm (cont.)

Theorem (Correctness of myEuclid)

When Algorithm myEuclid terminates, x or y stores the value of gcd(m, n) (assuming that m, n > 0 initially).

Lemma

Let Inv(m, n, x, y) denote the assertion:

$$x > 0 \land y > 0 \land \operatorname{gcd}(x, y) = \operatorname{gcd}(m, n).$$

Then, Inv(m, n, x, y) is a loop invariant of the while loop, assuming that m, n > 0 initially.

Yih-Kuen Tsay (IM.NTU)

Mathematical Induction

Algorithms 2018 35 / 36

イロト イポト イヨト イヨト 二日

A Variant of Euclid's Algorithm (cont.)

Theorem (Correctness of myEuclid)

When Algorithm myEuclid terminates, x or y stores the value of gcd(m, n) (assuming that m, n > 0 initially).

Lemma

Let Inv(m, n, x, y) denote the assertion:

$$x > 0 \land y > 0 \land \operatorname{gcd}(x, y) = \operatorname{gcd}(m, n).$$

Then, Inv(m, n, x, y) is a loop invariant of the while loop, assuming that m, n > 0 initially.

The loop invariant is sufficient to deduce that, when the while loop terminates, i.e., when x = y, either x or y stores the value of gcd(x, y), which equals gcd(m, n).

Yih-Kuen Tsay (IM.NTU)

Mathematical Induction

Algorithms 2018 35 / 36

Proof of a Loop Invariant

- The proof is by induction on the number of times the loop body is executed.
- More specifically, we show that
 - 1. the assertion is true when the flow of control reaches the loop for the first time and
 - 2. given that the assertion is true and the loop condition holds, the assertion will remain true after the next iteration (i.e., after the loop body is executed once more).

< ロ > < 同 > < 三 > < 三