Algorithms 2018: Searching and Sorting

(Based on [Manber 1989])

Yih-Kuen Tsay

April 10, 2018

1 Binary Search

Searching a Sorted Sequence

Problem 1. Let x_1, x_2, \dots, x_n be a sequence of real numbers such that $x_1 \leq x_2 \leq \dots \leq x_n$. Given a real number z, we want to find whether z appears in the sequence, and, if it does, to find an index i such that $x_i = z$.

Idea: cut the search space in half by asking only one question.

$$\begin{cases} T(1) = O(1) \\ T(n) = T(\frac{n}{2}) + O(1), n \ge 2 \end{cases}$$

Time complexity: $O(\log n)$ (applying the master theorem with a = 1, b = 2, k = 0, and $b^k = 1 = a$).

Binary Search

```
function Find (z, Left, Right) : integer;

begin

if Left = Right then

if X[Left] = z then Find := Left

else Find := 0

else

Middle := \lceil \frac{Left + Right}{2} \rceil;

if z < X[Middle] then

Find := Find(z, Left, Middle - 1)

else

Find := Find(z, Middle, Right)

ord
```

 \mathbf{end}

Binary Search (cont.)

Algorithm Binary_Search (X, n, z); begin Position := Find(z, 1, n); end

1.1 Cyclically Sorted Sequence

Searching a Cyclically Sorted Sequence

Problem 2. Given a cyclically sorted list, find the position of the minimal element in the list (we assume, for simplicity, that this position is unique).

- Example 1:

- The 4th is the minimal element.

• Example 2:

• To cut the search space in half, what question should we ask?

/* If X[Middle] < X[Right], then the minimal is in the left half (including X[Middle]; otherwise, it is in the right half (excluding X[Middle]). */

Cyclic Binary Search

```
Algorithm Cyclic_Binary_Search (X, n);
begin
Position := Cyclic_Find(1, n);
end
function Cyclic_Find (Left, Right) : integer;
begin
```

```
\begin{array}{l} \textbf{if } Left = Right \ \textbf{then } Cyclic\_Find := Left \\ \textbf{else} \\ Middle := \lfloor \frac{Left + Right}{2} \rfloor; \\ \textbf{if } X[Middle] < X[Right] \ \textbf{then} \\ Cyclic\_Find := Cyclic\_Find(Left, Middle) \\ \textbf{else} \\ Cyclic\_Find := Cyclic\_Find(Middle + 1, Right) \end{array}
```

 \mathbf{end}

1.2 "Fixpoints"

"Fixpoints"

Problem 3. Given a sorted sequence of distinct integers a_1, a_2, \dots, a_n , determine whether there exists an index i such that $a_i = i$.

• Example 1:

• Example 2:

_		1	2	3	4	5	6	7	8			
	[-1	1	2	5	6	8	9	10]		
_	Th	ere is	no	$i \mathrm{st}$	uch	tha	t a	i =	i.			

• Again, can we cut the search space in half by asking only one question?

/* As the numbers are distinct, they increase or decrease at least as fast as the indices (which always increase or decrease by one). If X[Middle] < Middle, then the fixpoint (if it exists) must be in the left half (excluding X[Middle]; otherwise, it must be in the right half (including X[Middle]). */

A Special Binary Search

```
 \begin{array}{ll} \textbf{function Special_Find } (Left, Right) : integer; \\ \textbf{begin} \\ \textbf{if } Left = Right \textbf{then} \\ \textbf{if } A[Left] = Left \textbf{then } Special\_Find := Left \\ \textbf{else } Special\_Find := 0 \\ \textbf{else} \\ \\ Middle := \lfloor \frac{Left + Right}{2} \rfloor; \\ \textbf{if } A[Middle] < Middle \textbf{then} \\ \\ Special\_Find := Special\_Find(Middle + 1, Right) \\ \textbf{else} \\ \\ \\ Special\_Find := Special\_Find(Left, Middle) \\ \end{array}
```

end

A Special Binary Search (cont.)

1.3 Stuttering Subsequence

Stuttering Subsequence

Problem 4. Given two sequences $A (= a_1 a_2 \cdots a_n)$ and $B (= b_1 b_2 \cdots b_m)$, find the maximal value of *i* such that B^i is a subsequence of A.

- If B = xyzzx, then $B^2 = xxyyzzzxx$, $B^3 = xxxyyyzzzzxxx$, etc.
- B is a subsequence of A if we can embed B inside A in the same order but with possible holes.
- For example, $B^2 = xxyyzzzxx$ is a subsequence of xxzzyyyyxxzzzxxx.
- If B^j is a subsequence of A, then B^i is a subsequence of A, for $1 \le i \le j$.
- The maximum value of *i* cannot exceed $\lfloor \frac{n}{m} \rfloor$ (or B^i would be longer than A).

Stuttering Subsequence (cont.)

Two ways to find the maximum i:

- Sequential search: try 1, 2, 3, etc. sequentially. Time complexity: O(nj), where j is the maximum value of i.
- Binary search between 1 and $\lfloor \frac{n}{m} \rfloor$. Time complexity: $O(n \log \frac{n}{m})$.

Can binary search be applied, if the bound $\lfloor \frac{n}{m} \rfloor$ is unknown?

Think of the base case in a reversed induction.

/* Try 2⁰, 2¹, 2², \cdots , 2^{k-1}, and 2^k sequentially. If the target falls between 2^{k-1} and 2^k, apply binary search within that region. */

2 Interpolation Search

Interpolation Search

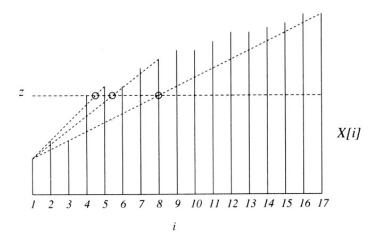
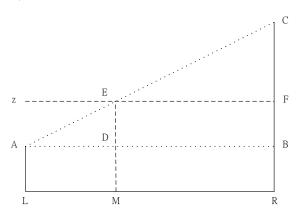


Figure 6.4 Interpolation search.

Source: [Manber 1989].

Interpolation Search (cont.)



$$\frac{\overline{LM}}{\overline{LR}} = \frac{\overline{AD}}{\overline{AB}} = \frac{\overline{AE}}{\overline{AC}} = \frac{\overline{BF}}{\overline{BC}}, \text{ so } |\overline{LM}| = \frac{|\overline{BF}|}{|\overline{BC}|} \times |\overline{LR}|$$

Interpolation Search (cont.)

 $\begin{array}{ll} \textbf{function Int_Find} \ (z, Left, Right) : integer; \\ \textbf{begin} \\ \textbf{if} \ X[Left] = z \ \textbf{then} \ Int_Find := Left \\ \textbf{else} \ \textbf{if} \ Left = Right \ \textbf{or} \ X[Left] = X[Right] \ \textbf{then} \\ Int_Find := 0 \\ \textbf{else} \\ \\ Next_Guess := \lceil Left + \frac{(z-X[Left])(Right_Left)}{X[Right]-X[Left]} \rceil; \\ \textbf{if} \ z < X[Next_Guess] \ \textbf{then} \\ Int_Find := Int_Find(z, Left, Next_Guess - 1) \\ \textbf{else} \\ \\ Int_Find := Int_Find(z, Next_Guess, Right) \\ \end{array} \right)$

 \mathbf{end}

$$/* Next_Guess - Left = |\overline{LM}| = \frac{|\overline{BF}|}{|\overline{BC}|} \times |\overline{LR}| \approx \lceil \frac{(z - X[Left])(Right - Left)}{X[Right] - X[Left]} \rceil * /$$

Interpolation Search (cont.)

Algorithm Interpolation_Search (X, n, z); begin if z < X[1] or z > X[n] then Position := 0else $Position := Int_Find(z, 1, n)$; end

3 Sorting

Sorting

Problem 5. Given n numbers x_1, x_2, \dots, x_n , arrange them in increasing order. In other words, find a sequence of distinct indices $1 \le i_1, i_2, \dots, i_n \le n$, such that $x_{i_1} \le x_{i_2} \le \dots \le x_{i_n}$.

A sorting algorithm is called **in-place** if no additional work space is used besides the initial array that holds the elements.

3.1 Using Balanced Search Trees

Using Balanced Search Trees

- Balanced search trees, such as AVL trees, may be used for sorting:
 - 1. Create an empty tree.
 - 2. Insert the numbers one by one to the tree.
 - 3. Traverse the tree and output the numbers.
- What's the time complexity? Suppose we use an AVL tree.

3.2**Radix Sort**

Radix Sort

Algorithm Straight_Radix (X, n, k); begin

put all elements of X in a queue GQ; for i := 1 to d do initialize queue Q[i] to be empty for i := k downto 1 do while GQ is not empty do pop x from GQ; d := the i-th digit of x; insert x into Q[d]; for t := 1 to d do insert Q[t] into GQ; for i := 1 to n do pop X[i] from GQ

end

Time complexity: O(nk).

3.3 Merge Sort

Merge Sort

Algorithm Mergesort (X, n); begin $M_Sort(1,n)$ end

procedure M_Sort (*Left*, *Right*); begin if Right - Left = 1 then if X[Left] > X[Right] then swap(X[Left], X[Right])else if $Left \neq Right$ then $Middle := \left\lceil \frac{1}{2} (Left + Right) \right\rceil;$ $M_Sort(Left, Middle - 1);$ $M_Sort(Middle, Right);$

```
Merge Sort (cont.)
```

-

$$\begin{split} i &:= Left; \ j := Middle; \ k := 0; \\ \textbf{while} \ (i \leq Middle - 1) \ \text{and} \ (j \leq Right) \ \textbf{do} \\ k &:= k + 1; \\ \textbf{if} \ X[i] \leq X[j] \ \textbf{then} \\ TEMP[k] &:= X[i]; \ i := i + 1 \\ \textbf{else} \ TEMP[k] &:= X[j]; \ j := j + 1; \\ \textbf{if} \ j > Right \ \textbf{then} \\ \textbf{for} \ t := 0 \ \textbf{to} \ Middle - 1 - i \ \textbf{do} \\ X[Right - t] &:= X[Middle - 1 - t] \\ \textbf{for} \ t := 0 \ \textbf{to} \ k - 1 \ \textbf{do} \\ X[Left + t] &:= TEMP[1 + t] \end{split}$$

end

Time complexity: $O(n \log n)$.

Merge Sort (cont.)

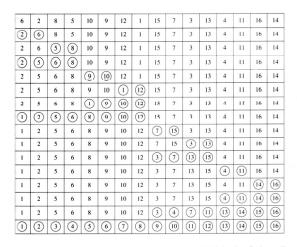


Figure 6.8 An example of mergesort. The first row is in the initial order. Each row illustrates either an exchange operation or a merge. The numbers that are involved in the current operation are circled.

Source: [Manber 1989].

3.4 Quick Sort

Quick Sort

```
Algorithm Quicksort (X, n);
begin
Q\_Sort(1, n)
end
```

```
- --
```

 $Q_Sort(Left, Middle - 1);$ $Q_Sort(Middle + 1, Right)$

end

Time complexity: $O(n^2)$, but $O(n \log n)$ in average

Quick Sort (cont.)

```
\begin{array}{l} \textbf{Algorithm Partition } (X, Left, Right);\\ \textbf{begin}\\ pivot := X[left];\\ L := Left; \ R := Right;\\ \textbf{while } L < R \ \textbf{do}\\ \textbf{while } X[L] \leq pivot \ \text{and } L \leq Right \ \textbf{do } L := L+1;\\ \textbf{while } X[R] > pivot \ \text{and } R \geq Left \ \textbf{do } R := R-1;\\ \textbf{if } L < R \ \textbf{then } swap(X[L], X[R]);\\ Middle := R;\\ swap(X[Left], X[Middle])\\ \textbf{end} \end{array}
```

Quick Sort (cont.)

6	2	8	5	10	9	12	1	15	7	3	13	4	11	16	14
6	2	4	5	10	9	12	1	15	7	3	13	8	11	16	14
6	2	4	5	3	9	12	1	15	7	10	13	8	11	16	14
6	2	4	5	3		12	9	15	7	10	13	8	11	16	14
1	2	4	5	3	6	12	9	15	7	10	13	8	11	16	14

Figure 6.10 Partition of an array around the pivot 6.

Source: [Manber 1989].

Quick Sort (cont.)

6	2	8	5	10	9	12	1	15	7	3	13	4	11	16	14
1	2	4	5	3	6	12	9	15	7	10	13	8	11	16	14
1	2	4	5	3	6	12	9	15	7	10	13	8	11	16	14
1	2	4	5	3	6	12	9	15	7	10	13	8	11	16	14
	2	3	4	5	6	12	9	15	7	10	13	8	11	16	14
	2	3	4	5	6	8	9	11	7	10	(12)	13	15	16	14
1	2	3	4	5	6	7	8	11	9	10	(12)	13	15	16	14
1	2	3	4	5	6	7	8	10	9	(11)	(12)	13	15	16	14
1	2	3	4	5	6	7	8	9	10	(11)	(12)	13	15	16	14
1	2	3	4	5	6	7	8	9	10	(11)	(12)	(13)	15	16	14
	2	3	4	5	6	7	8	9	10	(11)	(12)	(13)	14	(15)	16

Figure 6.12 An example of quicksort. The first line is the initial input. A new pivot is selected in each line. The pivots are circled. When a single number appears between two pivots it is obviously in the right position.

Source: [Manber 1989].

Average-Case Complexity of Quick Sort

• When X[i] is selected (at random) as the pivot,

T(n) = n - 1 + T(i - 1) + T(n - i), where $n \ge 2$.

The average running time will then be

$$T(n) = n - 1 + \frac{1}{n} \sum_{i=1}^{n} (T(i-1) + T(n-i))$$

= $n - 1 + \frac{1}{n} \sum_{i=1}^{n} T(i-1) + \frac{1}{n} \sum_{i=1}^{n} T(n-i)$
= $n - 1 + \frac{1}{n} \sum_{j=0}^{n-1} T(j) + \frac{1}{n} \sum_{j=0}^{n-1} T(j)$
= $n - 1 + \frac{2}{n} \sum_{i=0}^{n-1} T(i)$

• Solving this recurrence relation with full history, $T(n) = O(n \log n)$.

3.5 Heap Sort

Heap Sort

Algorithm Heapsort (A, n); begin $Build_Heap(A)$; for i := n downto 2 do swap(A[1], A[i]); $Rearrange_Heap(i - 1)$

 \mathbf{end}

Time complexity: $O(n \log n)$

Heap Sort (cont.)

procedure Rearrange_Heap (k); begin

```
\begin{array}{l} parent := 1;\\ child := 2;\\ \textbf{while } child \leq k-1 \ \textbf{do}\\ \textbf{if } A[child] < A[child+1] \ \textbf{then}\\ child := child+1;\\ \textbf{if } A[child] > A[parent] \ \textbf{then}\\ swap(A[parent], A[child]);\\ parent := child;\\ child := 2*child\\ \textbf{else } child := k \end{array}
```

end

Heap Sort (cont.)

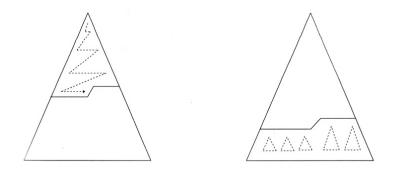


Figure 6.14 Top down and bottom up heap construction.

Source: [Manber 1989].

How do the two approaches compare?

/* Top down: $O(n \log n)$.

Bottom up: O(sum of the heights of all nodes) = O(n). Consider a full binary tree of height h. From an excercise problem in HW#2, we know that "sum of the heights of all nodes" of the tree equals $2^{h+1} - (h+2) \le 2^{h+1} - 1 = n$. */

Building a Heap Bottom Up

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
6	2	8	5	10	9	12	1	15	7	3	13	4	11	16	14
2	6	8	5	10	9	12	(14)	15	7	3	13	4	11	16	1
2	6	8	5	10	9	(16)	14	15	7	3	13	4	11	(12)	1
2	6	8	5	10	(13)	16	14	15	7	3	9	4	11	12	1
2	6	8	5	10	13	16	14	15	7	3	9	4	11	12	1
2	6	8	(15)	10	13	16	14	5	7	3	9	4	11	12	1
2	6	16	15	10	13	(12)	14	5	7	3	9	4	11	8	1
2	(15)	16	(14)	10	13	12	6	5	7	3	9	4	11	8	1
(16)	15	(13)	14	10	9	12	6	5	7	3	2	4	11	8	1

Figure 6.15 An example of building a heap bottom up. The numbers on top are the indices. The circled numbers are those that have been exchanged on that step.

Source: [Manber 1989] (6 and 2 in the first row should be swapped).

A Lower Bound for Sorting

- A lower bound for a particular problem is a proof that *no algorithm* can solve the problem better.
- We typically define a computation model and consider only those algorithms that fit in the model.
- Decision trees model computations performed by *comparison-based* algorithms.

Theorem 6 (Theorem 6.1). Every decision-tree algorithm for sorting has height $\Omega(n \log n)$.

Proof idea: there must be at least n! leaves, one for each possible outcome.

/* Recall Stirling's approximation: $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n (1 + O(1/n))$. The height of the decision tree must be at least log(n!), i.e., $\Omega(n \log n)$. */

Is the lower bound contradictory to the time complexity of radix sort?

4 Order Statistics

Order Statistics: Minimum and Maximum

Problem 7. Find the maximum and minimum elements in a given sequence.

- The obvious solution requires (n-1) + (n-2) (= 2n-3) comparisons between elements.
- Can we do better? Which comparisons could have been avoided?

Order Statistics: *Kth-Smallest*

Problem 8. Given a sequence $S = x_1, x_2, \dots, x_n$ of elements, and an integer k such that $1 \le k \le n$, find the kth-smallest element in S.

Order Statistics: *Kth-Smallest* (cont.)

 $\begin{array}{l} \textbf{procedure Select} \ (Left, Right, k); \\ \textbf{begin} \\ \textbf{if } Left = Right \textbf{then} \\ Select := Left \\ \textbf{else } Partition(X, Left, Right); \\ let Middle \ be \ the \ output \ of \ Partition; \\ \textbf{if } Middle \ - Left + 1 \geq k \ \textbf{then} \\ Select(Left, Middle, k) \\ \textbf{else} \\ Select(Middle + 1, Right, k - (Middle - Left + 1)) \\ \textbf{end} \end{array}$

Order Statistics: Kth-Smallest (cont.)

The nested "if" statement may be simplified:

Order Statistics: Kth-Smallest (cont.)

Algorithm Selection (X, n, k); begin if (k < 1) or (k > n) then print "error" else S := Select(1, n, k)end

5 Finding a Majority

Finding a Majority

Problem 9. Given a sequence of numbers, find the majority in the sequence or determine that none exists.

A number is a *majority* in a sequence if it occurs more than $\frac{n}{2}$ times in the sequence.

Idea: compare any two numbers in the sequence. What can we conclude if they are not equal?

/* If there is a majority, it is also a majority of the other n-2 numbers. */

What if they are equal?

Finding a Majority (cont.) Algorithm Majority (X, n); begin C := X[1]; M := 1;for i := 2 to n do if M = 0 then C := X[i]; M := 1else if C = X[i] then M := M + 1else M := M - 1;

Finding a Majority (cont.)

 $\begin{array}{l} \mbox{if } M=0 \ \mbox{then } Majority:=-1 \\ \mbox{else} \\ Count:=0; \\ \mbox{for } i:=1 \ \mbox{to } n \ \mbox{do} \\ \mbox{if } X[i]=C \ \mbox{then } Count:=Count+1; \\ \mbox{if } Count>n/2 \ \mbox{then } Majority:=C \\ \mbox{else } Majority:=-1 \end{array}$

 \mathbf{end}