Algorithms 2018: Searching and Sorting

(Based on [Manber 1989])

Yih-Kuen Tsay
April 10, 2018

1 Binary Search

Searching a Sorted Sequence

Problem 1. Let x1,zs, -+ ,x, be a sequence of real numbers such that x1 < 29 < --- < x,. Given a real
number z, we want to find whether z appears in the sequence, and, if it does, to find an index i such that
Tr;, = Z.

Idea: cut the search space in half by asking only one question.

T(1) = 0(1)
T(n) = T(2) + O(1),n > 2

Time complexity: O(logn) (applying the master theorem with a =1, b =2, k =0, and b* = 1 = a).

Binary Search

function Find (z, Left, Right) : integer;
begin
if Left = Right then
if X[Left] = z then Find := Left
else Find :=0
else
Middle := [LeltRightT,
if z < X[Middle] then
Find := Find(z, Left, Middle — 1)
else
Find := Find(z, Middle, Right)
end

Binary Search (cont.)

Algorithm Binary_Search (X, n, z);
begin

Position := Find(z,1,n);
end

1.1 Cyclically Sorted Sequence
Searching a Cyclically Sorted Sequence

Problem 2. Given a cyclically sorted list, find the position of the minimal element in the list (we assume,

for simplicity, that this position is unique).

e Example 1:

123456 78
[56 70 1 2 3 4]

— The 4th is the minimal element.

e Example 2:
_ 1 2 3 45 6 7 8
[01 2 3 45 6 7]
— The 1st is the minimal element.

e To cut the search space in half, what question should we ask?

/* If X[Middle] < X[Right], then the minimal is in the left half (including X [Middle]; otherwise, it

is in the right half (excluding X[Middle]). */

Cyclic Binary Search

Algorithm Cyclic_Binary Search (X, n);
begin

Position := Cyclic_Find(1,n);
end

function Cyclic_Find (Left, Right) : integer;
begin
if Left = Right then Cyclic_Find := Left
else
Middle := LiLe‘ftJ;RightJ;
if X[Middle] < X[Right] then
Cyclic_Find := Cyclic_Find(Left, Middle)
else
Cyclic_Find := Cyclic_Find(Middle + 1, Right)
end

1.2 “Fixpoints”

“Fixpoints”

Problem 3. Given a sorted sequence of distinct integers a1, as, - - -

index i such that a; = 1.

e Example 1:

[-1 1 2 4 5

— a4 = 4 (there are more ...).

,ay, determine whether there exists an

e Example 2:

8
10]

1 2 3 4
[-1 1 25

— There is no 4 such that a; = i.

5 6 7
6 8 9

e Again, can we cut the search space in half by asking only one question?

/* As the numbers are distinct, they increase or decrease at least as fast as the indices (which always
increase or decrease by one). If X[Middle] < Middle, then the fixpoint (if it exists) must be in the
left half (excluding X [Middle]; otherwise, it must be in the right half (including X [Middle]). */

A Special Binary Search

function Special Find (Left, Right) : integer;
begin
if Left = Right then
if A[Left] = Left then Special_Find := Left
else Special _Find := 0
else
Middle := LiLeﬁ";RwhtJ;
if A[Middle] < Middle then
Special _Find := Special _‘Find(Middle + 1, Right)
else
Special _Find := Special _‘Find(Left, Middle)
end

A Special Binary Search (cont.)

Algorithm Special Binary_Search (A4, n);
begin

Position := Special _Find(1,n);
end

1.3 Stuttering Subsequence

Stuttering Subsequence

Problem 4. Given two sequences A (= ajas - ap) and B (= biby - - by,), find the mazimal value of i such
that B? is a subsequence of A.

o If B = xyzzx, then B? = xxyyzzzzax, B® = zxayyyzzzzzzeae, etc.

e B is a subsequence of A if we can embed B inside A in the same order but with possible holes.

For example, B?2 = zxyyzzzzax is a subsequence of zxzzyyyyrrzzzzzrr.

If B7 is a subsequence of A, then B’ is a subsequence of A, for 1 <3 < j.

e The maximum value of i cannot exceed |2 | (or B* would be longer than A).

Stuttering Subsequence (cont.)
Two ways to find the maximum 3:

e Sequential search: try 1, 2, 3, etc. sequentially.

Time complexity: O(nj), where j is the maximum value of i.

e Binary search between 1 and |-].

Time complexity: O(nlog =-).

Can binary search be applied, if the bound [| is unknown?
Think of the base case in a reversed induction.

/* Try 20, 21,22 ... 2F=1 and 2% sequentially. If the target falls between 2*~! and 2%, apply binary search
within that region. */

2 Interpolation Search

Interpolation Search

X[i]

1 2 3 4 5 6 7 8 9 101112131415 1617
i
Figure 6.4 Interpolation search.

Source: [Manber 1989].

Interpolation Search (cont.)

C
E
/R — T,r; 777777777777777777777 F
I
i
D |
At L B
|
I
|
|
l
L M R

LM AD AE BF S BF —
— —:::7SO|LM|: |7‘ X |LR‘
LR AB AC BC |BC|

Interpolation Search (cont.)

function Int_Find (z, Left, Right) : integer;
begin
if X[Left] = z then Int_Find := Left
else if Left = Right or X[Left] = X[Right] then
Int_Find :=0
else

L (z—X[Left])(Right—Left)q.
Next_Guess := [Left + X[Right]_Xg[Leﬁ] 1
if z < X[Next_Guess| then
Int_Find := Int_Find(z, Left, Next_Guess — 1)
else

Int_Find := Int_Find(z, Next_Guess, Right)

end

/* Next_ Guess — Left = |[LM| = IBE| |LR| ~ [(Z_))i[[%iggg](f;‘]['zte}zefﬂ] */

Interpolation Search (cont.)

Algorithm Interpolation_Search (X, n, z);
begin
if z < X[1] or z > X|[n] then Position := 0
else Position := Int_Find(z,1,n);

end

3 Sorting

Sorting

Problem 5. Given n numbers x1, xo, -+, x,, arrange them in increasing order. In other words, find a
sequence of distinct indices 1 < iq,49, -+ ,in < n, such that z;, < x;, <---<ux; .

A sorting algorithm is called in-place if no additional work space is used besides the initial array that
holds the elements.

3.1 Using Balanced Search Trees
Using Balanced Search Trees
e Balanced search trees, such as AVL trees, may be used for sorting:

1. Create an empty tree.
2. Insert the numbers one by one to the tree.

3. Traverse the tree and output the numbers.

e What’s the time complexity? Suppose we use an AVL tree.

3.2 Radix Sort
Radix Sort

Algorithm Straight_Radix (X, n, k);
begin
put all elements of X in a queue GQ;
for i :=1to ddo
initialize queue Q[i] to be empty
for i := k downto 1 do
while GQ is not empty do
pop z from GQ;
d := the i-th digit of x;
insert x into Q[d];
fort:=1toddo
insert Q[t] into GQ;
for i :=1tondo
pop Xi] from GQ
end

Time complexity: O(nk).

3.3 Merge Sort
Merge Sort

Algorithm Mergesort (X, n);
begin M _Sort(1,n) end

procedure M _Sort (Left, Right);
begin
if Right — Left =1 then

if X[Left] > X[Right] then swap(X|[Left], X[Right])

else if Left # Right then
Middle == [1(Left + Right)];
M _Sort(Left, Middle — 1);
M _Sort(Middle, Right);

Merge Sort (cont.)

1 := Left; j:= Middle; k :=0;
while (i < Middle — 1) and (j < Right) do
k=k+1;
if X[i] < X[j] then
TEMPI[k] :== X[i]; @
else TEMP[k] := X[j];
if j > Right then
for ¢t := 0 to Middle — 1 —i do
X[Right —t] := X[Middle — 1 — t
fort:=0tok—1do
X[Left+t] :== TEMP[1+1]

::+

end

Time complexity: O(nlogn).

Merge Sort (cont.)

628 |sw|on|1 |73 |13| 4 1
D@8 |5 w1 15|73 [m]«]nlwln]
2|6 |3 oo |1 3[4 1 |
9 @ @ @ 10 9 12 1 15 ; 7 ' 3 13 4 ‘ 1 16 14
2 s e |8 ||| s 7|3 |3 a6
s e e lo [0 @@ 73]nl4 il |
s || | D® @ s |73 |ma|afin]s|n
DOIOIG®|® @@ s 7|2 |n|aln [e | 14
1 2 5 6 8 9 10-_.|2 @ @ 3 13 4 A 16 14
vz s]e s |9 [w|iz]7 |5 |@[@ 4]0 | 14
vl2s|e|s]|ow|[2@ @@ 4|0l [1
2 s|e|s ol]n|s|@® ®. 6 | 1
1 2 5 6 8 9 10 12 | 3 7 13 15 4 I 1@ @
vz s e s |o w32l [@0G0G0@E
vz s e 8|9 w0 2|® @‘® @\®I® };
ollelislolalolvllCtTEIIIIC

Figure 6.8 An example of mergesort. The first row is in the initial order. Each row il-
lustrates either an exchange operation or a merge. The numbers that are involved in the

current operation are circled.

Source: [Manber 1989].

3.4 Quick Sort
Quick Sort

Algorithm Quicksort (X, n);
begin

Q_Sort(1,n)
end

procedure Q_Sort (Left, Right);
begin
if Left < Right then
Partition(X, Left, Right);
Q-Sort(Left, Middle — 1);
Q-Sort(Middle + 1, Right)
end

Time complexity: O(n?), but O(nlogn) in average

Quick Sort (cont.)

Algorithm Partition (X, Left, Right);
begin
pivot == X[left];
L := Left; R := Right;
while L < R do
while X[L] < pivot and L < Right do L := L+ 1;
while X[R] > pivot and R > Left do R := R — 1;
if L < R then swap(X[L], X[R)]);
Middle :== R;
swap(X[Left], X[Middle])
end

Quick Sort (cont.)

12 I 1 15 i 3 13
|

12 |1 15 @ 3 13

7(;%)4-

| 15 7 ‘ 10 13 8 1 16 | 14

9
9
9 1 3

2| a|s |3 |@Q2|@|15|7 w0 13 s 10 16 14
® 9

(-—-)la\ || &
%}
&
wn
w

Figure 6.10 Partition of an array around the pivot 6.

Source: [Manber 1989].

Quick Sort (cont.)

3 13 4 11 16 | 14

10 13 8 11 16 | 14

10 | 13 8 1 16 | 14

10 13 8 11 16 14

10 13 8 1n 16 14

S
®EEE®®

ceeeEeE -] [-[-
CEEREEBEEEE
®

@@E|@|@) |«

ClCClCCCCCONE
OEOEIOEOE] ||~
@QE@E@E®) -

Figure 6.12 An example of quicksort. The first line is the initial input. A new pivot is
selected in each line. The pivots are circled. When a single number appears between
two pivots it is obviously in the right position.

Source: [Manber 1989].

Average-Case Complexity of Quick Sort
o When X[i] is selected (at random) as the pivot,
Tn)=n—1+T(@—1)4+T(n—1), where n > 2.
The average running time will then be

T(n) =n—1+433" (T6G—1)+T(n—1i)
:n—1+%Zz;lT(i_l)'i‘%Z?:lT(n_i)
=n—1+ 130 0T0) + L300 T()
=n—1423"1T()

e Solving this recurrence relation with full history, T'(n) = O(nlogn).

3.5 Heap Sort
Heap Sort

Algorithm Heapsort (A, n);
begin
Build_Heap(A);
for i := n downto 2 do
swap(A[1], A[i]);
Rearrange_Heap(i — 1)
end

Time complexity: O(nlogn)

Heap Sort (cont.)

procedure Rearrange Heap (k);
begin
parent := 1;
child := 2;
while child < k-1 do
if Alchild) < Alchild + 1] then
child := child + 1;
if Alchild] > Alparent] then
swap(Alparent], A[child));
parent := child,
child := 2 x child
else child .= k
end

Heap Sort (cont.)

Figure 6.14 Top down and bottom up heap construction.

Source: [Manber 1989].
How do the two approaches compare?

/* Top down: O(nlogn).

Bottom up: O(sum of the heights of all nodes) = O(n). Consider a full binary tree of height h. From an
excercise problem in HW#2, we know that “sum of the heights of all nodes” of the tree equals 2"+ —(h+2) <
2htl —1=n. */

Building a Heap Bottom Up

| 9 | 12 sl 3]| e
0] 9 e[fas | 7|3 [n|a4|n GIN
0 (3] 16 | 14 s 7 [@ a 2]

6 8 5 10 13 16 14 15 7 3 9 4 1 12 1

6 [8 [(s)[10|13 16| 14 @ 703 e afu2||

26 (8 s [w13 @ s br 3o el |®] |
[I~ |

2 [(19)] 16 |4\| w || s [73|94 |nls |1

(18| 15 | (3) 14 |10 IR EERERE { 3@ a8 [

ta
| =
w

=
> |
o
w

[

=}
=
-

(X

[

Figure 6.15 An example of building a heap bottom up. The numbers on top are the in-
dices. The circled numbers are those that have been exchanged on that step.

Source: [Manber 1989] (6 and 2 in the first row should be swapped).

A Lower Bound for Sorting

e A lower bound for a particular problem is a proof that no algorithm can solve the problem better.
o We typically define a computation model and consider only those algorithms that fit in the model.

e Decision trees model computations performed by comparison-based algorithms.

Theorem 6 (Theorem 6.1). Fvery decision-tree algorithm for sorting has height Q(nlogn).

Proof idea: there must be at least n! leaves, one for each possible outcome.

/* Recall Stirling’s approximation: n! = v/27mn (%)n (1+0O(1/n)). The height of the decision tree must be
at least log(n!), i.e., Q(nlogn). */

Is the lower bound contradictory to the time complexity of radix sort?

4 Order Statistics

Order Statistics: Minimum and Maximum
Problem 7. Find the maximum and minimum elements in a given sequence.
e The obvious solution requires (n — 1) + (n — 2) (= 2n — 3) comparisons between elements.

e Can we do better? Which comparisons could have been avoided?

Order Statistics: Kth-Smallest

Problem 8. Given a sequence S = x1, xa, -+, x, of elements, and an integer k such that 1 < k <n, find
the kth-smallest element in S.

10

Order Statistics: Kth-Smallest (cont.)

procedure Select (Left, Right, k);
begin
if Left = Right then
Select :== Left
else Partition(X, Left, Right);
let Middle be the output of Partition;
if Middle — Left+1 > k then
Select(Left, Middle, k)
else
Select(Middle + 1, Right, k — (Middle — Left + 1))
end

Order Statistics: Kth-Smallest (cont.)
The nested “if” statement may be simplified:

procedure Select (Left, Right, k);
begin
if Left = Right then
Select := Left
else Partition(X, Left, Right);
let Middle be the output of Partition;
if Middle > k then
Select(Left, Middle, k)
else
Select(Middle + 1, Right, k)
end

Order Statistics: Kth-Smallest (cont.)
Algorithm Selection (X, n,k);
begin
if (k< 1) or (k> n) then print “error”
else S := Select(1,n, k)
end

5 Finding a Majority
Finding a Majority

Problem 9. Given a sequence of numbers, find the majority in the sequence or determine that none exists.

A number is a majority in a sequence if it occurs more than 3 times in the sequence.

Idea: compare any two numbers in the sequence. What can we conclude if they are not equal?
/* If there is a majority, it is also a majority of the other n — 2 numbers. */

What if they are equal?

11

Finding a Majority (cont.)

Algorithm Majority (X,n);
begin
C:=X[1]; M:=1,
for i :=2tondo
if M =0 then
C:=X[i|; M:=1
else
if C = X[i] then M := M +1
else M == M —1;

Finding a Majority (cont.)

if M =0 then Majority := —1

else
Count := 0;
for: :=1tondo

if X[i] = C then Count := Count + 1;
if Count > n/2 then Majority := C
else Majority := —1
end

12

