
Searching and Sorting
(Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 1 / 39

Searching a Sorted Sequence

Problem

Let x1, x2, · · · , xn be a sequence of real numbers such that
x1 ≤ x2 ≤ · · · ≤ xn. Given a real number z, we want to find whether
z appears in the sequence, and, if it does, to find an index i such that
xi = z.

Idea: cut the search space in half by asking only one question.{
T (1) = O(1)

T (n) = T (n2) + O(1), n ≥ 2

Time complexity: O(log n) (applying the master theorem with a = 1,
b = 2, k = 0, and bk = 1 = a).

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 2 / 39

Searching a Sorted Sequence

Problem

Let x1, x2, · · · , xn be a sequence of real numbers such that
x1 ≤ x2 ≤ · · · ≤ xn. Given a real number z, we want to find whether
z appears in the sequence, and, if it does, to find an index i such that
xi = z.

Idea: cut the search space in half by asking only one question.{
T (1) = O(1)

T (n) = T (n2) + O(1), n ≥ 2

Time complexity: O(log n) (applying the master theorem with a = 1,
b = 2, k = 0, and bk = 1 = a).

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 2 / 39

Binary Search

function Find (z , Left,Right) : integer ;
begin

if Left = Right then
if X [Left] = z then Find := Left
else Find := 0

else
Middle := dLeft+Right

2
e;

if z < X [Middle] then
Find := Find(z , Left,Middle − 1)

else
Find := Find(z ,Middle,Right)

end

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 3 / 39

Binary Search (cont.)

Algorithm Binary Search (X , n, z);
begin

Position := Find(z , 1, n);
end

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 4 / 39

Searching a Cyclically Sorted Sequence

Problem

Given a cyclically sorted list, find the position of the minimal element
in the list (we assume, for simplicity, that this position is unique).

Example 1:
1 2 3 4 5 6 7 8

[5 6 7 0 1 2 3 4]

The 4th is the minimal element.

Example 2:
1 2 3 4 5 6 7 8

[0 1 2 3 4 5 6 7]

The 1st is the minimal element.

To cut the search space in half, what question should we ask?

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 5 / 39

Searching a Cyclically Sorted Sequence

Problem

Given a cyclically sorted list, find the position of the minimal element
in the list (we assume, for simplicity, that this position is unique).

Example 1:
1 2 3 4 5 6 7 8

[5 6 7 0 1 2 3 4]

The 4th is the minimal element.

Example 2:
1 2 3 4 5 6 7 8

[0 1 2 3 4 5 6 7]

The 1st is the minimal element.

To cut the search space in half, what question should we ask?

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 5 / 39

Cyclic Binary Search

Algorithm Cyclic Binary Search (X , n);
begin

Position := Cyclic Find(1, n);
end

function Cyclic Find (Left,Right) : integer ;
begin

if Left = Right then Cyclic Find := Left
else

Middle := bLeft+Right
2
c;

if X [Middle] < X [Right] then
Cyclic Find := Cyclic Find(Left,Middle)

else
Cyclic Find := Cyclic Find(Middle + 1,Right)

end

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 6 / 39

“Fixpoints”

Problem

Given a sorted sequence of distinct integers a1, a2, · · · , an, determine
whether there exists an index i such that ai = i .

Example 1:
1 2 3 4 5 6 7 8

[−1 1 2 4 5 6 8 9]

a4 = 4 (there are more ...).

Example 2:
1 2 3 4 5 6 7 8

[−1 1 2 5 6 8 9 10]

There is no i such that ai = i .

Again, can we cut the search space in half by asking only one
question?

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 7 / 39

“Fixpoints”

Problem

Given a sorted sequence of distinct integers a1, a2, · · · , an, determine
whether there exists an index i such that ai = i .

Example 1:
1 2 3 4 5 6 7 8

[−1 1 2 4 5 6 8 9]

a4 = 4 (there are more ...).

Example 2:
1 2 3 4 5 6 7 8

[−1 1 2 5 6 8 9 10]

There is no i such that ai = i .

Again, can we cut the search space in half by asking only one
question?

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 7 / 39

A Special Binary Search

function Special Find (Left,Right) : integer ;
begin

if Left = Right then
if A[Left] = Left then Special Find := Left
else Special Find := 0

else
Middle := bLeft+Right

2
c;

if A[Middle] < Middle then
Special Find := Special Find(Middle + 1,Right)

else
Special Find := Special Find(Left,Middle)

end

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 8 / 39

A Special Binary Search (cont.)

Algorithm Special Binary Search (A, n);
begin

Position := Special Find(1, n);
end

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 9 / 39

Stuttering Subsequence

Problem

Given two sequences A (= a1a2 · · · an) and B (= b1b2 · · · bm), find
the maximal value of i such that B i is a subsequence of A.

If B = xyzzx , then B2 = xxyyzzzzxx , B3 = xxxyyyzzzzzzxxx ,
etc.

B is a subsequence of A if we can embed B inside A in the same
order but with possible holes.

For example, B2 = xxyyzzzzxx is a subsequence of
xxzzyyyyxxzzzzzxxx .

If B j is a subsequence of A, then B i is a subsequence of A, for
1 ≤ i ≤ j .

The maximum value of i cannot exceed b n
m
c (or B i would be

longer than A).

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 10 / 39

Stuttering Subsequence

Problem

Given two sequences A (= a1a2 · · · an) and B (= b1b2 · · · bm), find
the maximal value of i such that B i is a subsequence of A.

If B = xyzzx , then B2 = xxyyzzzzxx , B3 = xxxyyyzzzzzzxxx ,
etc.

B is a subsequence of A if we can embed B inside A in the same
order but with possible holes.

For example, B2 = xxyyzzzzxx is a subsequence of
xxzzyyyyxxzzzzzxxx .

If B j is a subsequence of A, then B i is a subsequence of A, for
1 ≤ i ≤ j .

The maximum value of i cannot exceed b n
m
c (or B i would be

longer than A).

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 10 / 39

Stuttering Subsequence

Problem

Given two sequences A (= a1a2 · · · an) and B (= b1b2 · · · bm), find
the maximal value of i such that B i is a subsequence of A.

If B = xyzzx , then B2 = xxyyzzzzxx , B3 = xxxyyyzzzzzzxxx ,
etc.

B is a subsequence of A if we can embed B inside A in the same
order but with possible holes.

For example, B2 = xxyyzzzzxx is a subsequence of
xxzzyyyyxxzzzzzxxx .

If B j is a subsequence of A, then B i is a subsequence of A, for
1 ≤ i ≤ j .

The maximum value of i cannot exceed b n
m
c (or B i would be

longer than A).

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 10 / 39

Stuttering Subsequence (cont.)

Two ways to find the maximum i :

Sequential search: try 1, 2, 3, etc. sequentially.

Time complexity: O(nj), where j is the maximum value of i .

Binary search between 1 and b n
m
c.

Time complexity: O(n log n
m

).

Can binary search be applied, if the bound b n
m
c is unknown?

Think of the base case in a reversed induction.

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 11 / 39

Stuttering Subsequence (cont.)

Two ways to find the maximum i :

Sequential search: try 1, 2, 3, etc. sequentially.
Time complexity: O(nj), where j is the maximum value of i .

Binary search between 1 and b n
m
c.

Time complexity: O(n log n
m

).

Can binary search be applied, if the bound b n
m
c is unknown?

Think of the base case in a reversed induction.

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 11 / 39

Stuttering Subsequence (cont.)

Two ways to find the maximum i :

Sequential search: try 1, 2, 3, etc. sequentially.
Time complexity: O(nj), where j is the maximum value of i .

Binary search between 1 and b n
m
c.

Time complexity: O(n log n
m

).

Can binary search be applied, if the bound b n
m
c is unknown?

Think of the base case in a reversed induction.

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 11 / 39

Stuttering Subsequence (cont.)

Two ways to find the maximum i :

Sequential search: try 1, 2, 3, etc. sequentially.
Time complexity: O(nj), where j is the maximum value of i .

Binary search between 1 and b n
m
c.

Time complexity: O(n log n
m

).

Can binary search be applied, if the bound b n
m
c is unknown?

Think of the base case in a reversed induction.

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 11 / 39

Stuttering Subsequence (cont.)

Two ways to find the maximum i :

Sequential search: try 1, 2, 3, etc. sequentially.
Time complexity: O(nj), where j is the maximum value of i .

Binary search between 1 and b n
m
c.

Time complexity: O(n log n
m

).

Can binary search be applied, if the bound b n
m
c is unknown?

Think of the base case in a reversed induction.

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 11 / 39

Interpolation Search

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 12 / 39

Interpolation Search (cont.)

z

A

L RM

C

F
E

B
D

LM

LR
=

AD

AB
=

AE

AC
=

BF

BC
, so |LM | =

|BF |
|BC |

× |LR |

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 13 / 39

Interpolation Search (cont.)

function Int Find (z , Left,Right) : integer ;
begin

if X [Left] = z then Int Find := Left
else if Left = Right or X [Left] = X [Right] then

Int Find := 0
else

Next Guess := dLeft + (z−X [Left])(Right−Left)
X [Right]−X [Left]

e;
if z < X [Next Guess] then
Int Find := Int Find(z , Left,Next Guess − 1)

else
Int Find := Int Find(z ,Next Guess,Right)

end

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 14 / 39

Interpolation Search (cont.)

Algorithm Interpolation Search (X , n, z);
begin

if z < X [1] or z > X [n] then Position := 0
else Position := Int Find(z , 1, n);

end

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 15 / 39

Sorting

Problem

Given n numbers x1, x2, · · · , xn, arrange them in increasing order. In
other words, find a sequence of distinct indices 1 ≤ i1, i2, · · · , in ≤ n,
such that xi1 ≤ xi2 ≤ · · · ≤ xin .

A sorting algorithm is called in-place if no additional work space is
used besides the initial array that holds the elements.

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 16 / 39

Using Balanced Search Trees

Balanced search trees, such as AVL trees, may be used for
sorting:

1. Create an empty tree.
2. Insert the numbers one by one to the tree.
3. Traverse the tree and output the numbers.

What’s the time complexity? Suppose we use an AVL tree.

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 17 / 39

Using Balanced Search Trees

Balanced search trees, such as AVL trees, may be used for
sorting:

1. Create an empty tree.
2. Insert the numbers one by one to the tree.
3. Traverse the tree and output the numbers.

What’s the time complexity? Suppose we use an AVL tree.

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 17 / 39

Radix Sort

Algorithm Straight Radix (X , n, k);
begin

put all elements of X in a queue GQ;
for i := 1 to d do

initialize queue Q[i] to be empty
for i := k downto 1 do

while GQ is not empty do
pop x from GQ;
d := the i -th digit of x ;
insert x into Q[d];

for t := 1 to d do
insert Q[t] into GQ;

for i := 1 to n do
pop X [i] from GQ

end

Time complexity: O(nk).

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 18 / 39

Radix Sort

Algorithm Straight Radix (X , n, k);
begin

put all elements of X in a queue GQ;
for i := 1 to d do

initialize queue Q[i] to be empty
for i := k downto 1 do

while GQ is not empty do
pop x from GQ;
d := the i -th digit of x ;
insert x into Q[d];

for t := 1 to d do
insert Q[t] into GQ;

for i := 1 to n do
pop X [i] from GQ

end

Time complexity: O(nk).
Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 18 / 39

Merge Sort

Algorithm Mergesort (X , n);
begin M Sort(1, n) end

procedure M Sort (Left,Right);
begin

if Right − Left = 1 then
if X [Left] > X [Right] then swap(X [Left],X [Right])

else if Left 6= Right then
Middle := d1

2
(Left + Right)e;

M Sort(Left,Middle − 1);
M Sort(Middle,Right);

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 19 / 39

Merge Sort (cont.)

i := Left; j := Middle; k := 0;
while (i ≤ Middle − 1) and (j ≤ Right) do

k := k + 1;
if X [i] ≤ X [j] then
TEMP[k] := X [i]; i := i + 1

else TEMP[k] := X [j]; j := j + 1;
if j > Right then
for t := 0 to Middle − 1− i do

X [Right − t] := X [Middle − 1− t]
for t := 0 to k − 1 do

X [Left + t] := TEMP[1 + t]
end

Time complexity: O(n log n).

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 20 / 39

Merge Sort (cont.)

i := Left; j := Middle; k := 0;
while (i ≤ Middle − 1) and (j ≤ Right) do

k := k + 1;
if X [i] ≤ X [j] then
TEMP[k] := X [i]; i := i + 1

else TEMP[k] := X [j]; j := j + 1;
if j > Right then
for t := 0 to Middle − 1− i do

X [Right − t] := X [Middle − 1− t]
for t := 0 to k − 1 do

X [Left + t] := TEMP[1 + t]
end

Time complexity: O(n log n).

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 20 / 39

Merge Sort (cont.)

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 21 / 39

Quick Sort

Algorithm Quicksort (X , n);
begin

Q Sort(1, n)
end

procedure Q Sort (Left,Right);
begin

if Left < Right then
Partition(X , Left,Right);
Q Sort(Left,Middle − 1);
Q Sort(Middle + 1,Right)

end

Time complexity: O(n2), but O(n log n) in average

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 22 / 39

Quick Sort

Algorithm Quicksort (X , n);
begin

Q Sort(1, n)
end

procedure Q Sort (Left,Right);
begin

if Left < Right then
Partition(X , Left,Right);
Q Sort(Left,Middle − 1);
Q Sort(Middle + 1,Right)

end

Time complexity: O(n2), but O(n log n) in average

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 22 / 39

Quick Sort (cont.)

Algorithm Partition (X , Left,Right);
begin

pivot := X [left];
L := Left; R := Right;
while L < R do

while X [L] ≤ pivot and L ≤ Right do L := L + 1;
while X [R] > pivot and R ≥ Left do R := R − 1;
if L < R then swap(X [L],X [R]);

Middle := R ;
swap(X [Left],X [Middle])

end

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 23 / 39

Quick Sort (cont.)

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 24 / 39

Quick Sort (cont.)

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 25 / 39

Average-Case Complexity of Quick Sort

When X [i] is selected (at random) as the pivot,

T (n) = n − 1 + T (i − 1) + T (n − i), where n ≥ 2.

The average running time will then be

T (n) = n − 1 + 1
n

∑n
i=1(T (i − 1) + T (n − i))

= n − 1 + 1
n

∑n
i=1 T (i − 1) + 1

n

∑n
i=1 T (n − i)

= n − 1 + 1
n

∑n−1
j=0 T (j) + 1

n

∑n−1
j=0 T (j)

= n − 1 + 2
n

∑n−1
i=0 T (i)

Solving this recurrence relation with full history,
T (n) = O(n log n).

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 26 / 39

Average-Case Complexity of Quick Sort

When X [i] is selected (at random) as the pivot,

T (n) = n − 1 + T (i − 1) + T (n − i), where n ≥ 2.

The average running time will then be

T (n) = n − 1 + 1
n

∑n
i=1(T (i − 1) + T (n − i))

= n − 1 + 1
n

∑n
i=1 T (i − 1) + 1

n

∑n
i=1 T (n − i)

= n − 1 + 1
n

∑n−1
j=0 T (j) + 1

n

∑n−1
j=0 T (j)

= n − 1 + 2
n

∑n−1
i=0 T (i)

Solving this recurrence relation with full history,
T (n) = O(n log n).

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 26 / 39

Heap Sort

Algorithm Heapsort (A, n);
begin

Build Heap(A);
for i := n downto 2 do

swap(A[1],A[i]);
Rearrange Heap(i − 1)

end

Time complexity: O(n log n)

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 27 / 39

Heap Sort

Algorithm Heapsort (A, n);
begin

Build Heap(A);
for i := n downto 2 do

swap(A[1],A[i]);
Rearrange Heap(i − 1)

end

Time complexity: O(n log n)

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 27 / 39

Heap Sort (cont.)

procedure Rearrange Heap (k);
begin

parent := 1;
child := 2;
while child ≤ k − 1 do

if A[child] < A[child + 1] then
child := child + 1;

if A[child] > A[parent] then
swap(A[parent],A[child]);
parent := child ;
child := 2 ∗ child

else child := k
end

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 28 / 39

Heap Sort (cont.)

Source: [Manber 1989].

How do the two approaches compare?

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 29 / 39

Heap Sort (cont.)

Source: [Manber 1989].

How do the two approaches compare?

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 29 / 39

Building a Heap Bottom Up

Source: [Manber 1989] (6 and 2 in the first row should be swapped).

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 30 / 39

A Lower Bound for Sorting

A lower bound for a particular problem is a proof that no
algorithm can solve the problem better.

We typically define a computation model and consider only
those algorithms that fit in the model.

Decision trees model computations performed by
comparison-based algorithms.

Theorem (Theorem 6.1)

Every decision-tree algorithm for sorting has height Ω(n log n).

Proof idea: there must be at least n! leaves, one for each possible
outcome.

Is the lower bound contradictory to the time complexity of radix sort?

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 31 / 39

A Lower Bound for Sorting

A lower bound for a particular problem is a proof that no
algorithm can solve the problem better.

We typically define a computation model and consider only
those algorithms that fit in the model.

Decision trees model computations performed by
comparison-based algorithms.

Theorem (Theorem 6.1)

Every decision-tree algorithm for sorting has height Ω(n log n).

Proof idea: there must be at least n! leaves, one for each possible
outcome.

Is the lower bound contradictory to the time complexity of radix sort?

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 31 / 39

A Lower Bound for Sorting

A lower bound for a particular problem is a proof that no
algorithm can solve the problem better.

We typically define a computation model and consider only
those algorithms that fit in the model.

Decision trees model computations performed by
comparison-based algorithms.

Theorem (Theorem 6.1)

Every decision-tree algorithm for sorting has height Ω(n log n).

Proof idea: there must be at least n! leaves, one for each possible
outcome.

Is the lower bound contradictory to the time complexity of radix sort?

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 31 / 39

A Lower Bound for Sorting

A lower bound for a particular problem is a proof that no
algorithm can solve the problem better.

We typically define a computation model and consider only
those algorithms that fit in the model.

Decision trees model computations performed by
comparison-based algorithms.

Theorem (Theorem 6.1)

Every decision-tree algorithm for sorting has height Ω(n log n).

Proof idea: there must be at least n! leaves, one for each possible
outcome.

Is the lower bound contradictory to the time complexity of radix sort?

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 31 / 39

Order Statistics: Minimum and Maximum

Problem

Find the maximum and minimum elements in a given sequence.

The obvious solution requires (n − 1) + (n − 2) (= 2n − 3)
comparisons between elements.

Can we do better? Which comparisons could have been avoided?

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 32 / 39

Order Statistics: Minimum and Maximum

Problem

Find the maximum and minimum elements in a given sequence.

The obvious solution requires (n − 1) + (n − 2) (= 2n − 3)
comparisons between elements.

Can we do better? Which comparisons could have been avoided?

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 32 / 39

Order Statistics: Minimum and Maximum

Problem

Find the maximum and minimum elements in a given sequence.

The obvious solution requires (n − 1) + (n − 2) (= 2n − 3)
comparisons between elements.

Can we do better? Which comparisons could have been avoided?

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 32 / 39

Order Statistics: Kth-Smallest

Problem

Given a sequence S = x1, x2, · · · , xn of elements, and an integer k
such that 1 ≤ k ≤ n, find the kth-smallest element in S.

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 33 / 39

Order Statistics: Kth-Smallest (cont.)

procedure Select (Left,Right, k);
begin

if Left = Right then
Select := Left

else Partition(X , Left,Right);
let Middle be the output of Partition;
if Middle − Left + 1 ≥ k then
Select(Left,Middle, k)

else
Select(Middle + 1,Right, k − (Middle − Left + 1))

end

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 34 / 39

Order Statistics: Kth-Smallest (cont.)

The nested “if” statement may be simplified:

procedure Select (Left,Right, k);
begin

if Left = Right then
Select := Left

else Partition(X , Left,Right);
let Middle be the output of Partition;
if Middle ≥ k then
Select(Left,Middle, k)

else
Select(Middle + 1,Right, k)

end

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 35 / 39

Order Statistics: Kth-Smallest (cont.)

Algorithm Selection (X , n, k);
begin

if (k < 1) or (k > n) then print “error”
else S := Select(1, n, k)

end

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 36 / 39

Finding a Majority

Problem

Given a sequence of numbers, find the majority in the sequence or
determine that none exists.

A number is a majority in a sequence if it occurs more than n
2

times
in the sequence.

Idea: compare any two numbers in the sequence. What can we
conclude if they are not equal?

What if they are equal?

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 37 / 39

Finding a Majority

Problem

Given a sequence of numbers, find the majority in the sequence or
determine that none exists.

A number is a majority in a sequence if it occurs more than n
2

times
in the sequence.

Idea: compare any two numbers in the sequence. What can we
conclude if they are not equal?

What if they are equal?

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 37 / 39

Finding a Majority

Problem

Given a sequence of numbers, find the majority in the sequence or
determine that none exists.

A number is a majority in a sequence if it occurs more than n
2

times
in the sequence.

Idea: compare any two numbers in the sequence. What can we
conclude if they are not equal?

What if they are equal?

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 37 / 39

Finding a Majority (cont.)

Algorithm Majority (X , n);
begin

C := X [1]; M := 1;
for i := 2 to n do

if M = 0 then
C := X [i]; M := 1

else
if C = X [i] then M := M + 1
else M := M − 1;

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 38 / 39

Finding a Majority (cont.)

if M = 0 then Majority := −1
else

Count := 0;
for i := 1 to n do

if X [i] = C then Count := Count + 1;
if Count > n/2 then Majority := C
else Majority := −1

end

Yih-Kuen Tsay (IM.NTU) Searching and Sorting Algorithms 2018 39 / 39

	Binary Search
	Cyclically Sorted Sequence
	``Fixpoints''
	Stuttering Subsequence

	Interpolation Search
	Sorting
	Using Balanced Search Trees
	Radix Sort
	Merge Sort
	Quick Sort
	Heap Sort

	Order Statistics
	Finding a Majority

