

String Processing (Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

String Processing

Algorithms 2018 1 / 18

3

(日) (同) (日) (日) (日)

Data Compression

Problem

Given a text (a sequence of characters), find an encoding for the characters that satisfies the prefix constraint and that minimizes the total number of bits needed to encode the text.

The *prefix constraint* states that the prefixes of an encoding of one character must not be equal to a complete encoding of another character.

Denote the characters by c_1, c_2, \dots, c_n and their frequencies by f_1 , f_2, \dots, f_n . Given an encoding E in which a bit string s_i represents c_i , the length (number of bits) of the text encoded by using E is $\sum_{i=1}^{n} |s_i| \cdot f_i$.

A Code Tree

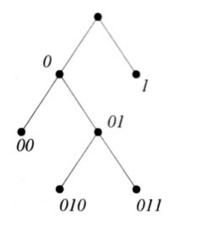


Figure 6.17 The tree representation of encoding.

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU)

String Processing

Algorithms 2018 3 / 18

3

A Huffman Tree

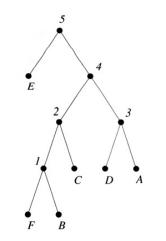


Figure 6.19 The Huffman tree for example 6.1.

 Source: [Manber 1989]. (Frequencies: A: 5, B: 2, C: 3, D: 4, E: 10, F:1), (≧)
 (≧)
 (≧)
 (○)
 (○)

 Yih-Kuen Tsay (IM.NTU)
 String Processing
 Algorithms 2018
 4 / 18

Huffman Encoding

Algorithm Huffman_Encoding (S, f); insert all characters into a heap H according to their frequencies; while *H* not empty **do** if H contains only one character X then make X the root of T else delete X and Y with lowest frequencies; from H: create Z with a frequency equal to the sum of the frequencies of X and Y; insert Z into H: make X and Y children of Z in T

Yih-Kuen Tsay (IM.NTU)

String Processing

Algorithms 2018 5 / 18

- 3

Huffman Encoding

Algorithm Huffman_Encoding (S, f); insert all characters into a heap H according to their frequencies; while *H* not empty **do** if H contains only one character X then make X the root of T else delete X and Y with lowest frequencies; from H: create Z with a frequency equal to the sum of the frequencies of X and Y; insert Z into H: make X and Y children of Z in T

What is its time complexity?

Yih-Kuen Tsay (IM.NTU)

4 注 ・ 4 注 ・ 注 の Q ペ
Algorithms 2018 5 / 18

Huffman Encoding

Algorithm Huffman_Encoding (S, f); insert all characters into a heap H according to their frequencies; while *H* not empty **do** if H contains only one character X then make X the root of T else delete X and Y with lowest frequencies; from H: create Z with a frequency equal to the sum of the frequencies of X and Y; insert Z into H: make X and Y children of Z in T

What is its time complexity? $O(n \log n)$

Yih-Kuen Tsay (IM.NTU)

String Processing

Algorithms 2018 5 / 18

- 31

String Matching

Problem

Given two strings $A (= a_1 a_2 \cdots a_n)$ and $B (= b_1 b_2 \cdots b_m)$, find the first occurrence (if any) of B in A. In other words, find the smallest k such that, for all $i, 1 \le i \le m$, we have $a_{k-1+i} = b_i$.

A (non-empty) substring of a string A is a consecutive sequence of characters $a_i a_{i+1} \cdots a_j$ ($i \leq j$) from A.

イロト イポト イヨト イヨト 二日

Straightforward String Matching

A = xyxxyxyxyxyxyxyxyxyxxxx, B = xyxyyxyxyxxxx, 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 6 7 1: 2: 3: х v 4: x v 5: x 6: х vxvxx v х 7: x 8: х 9: 10: x 11: х x 12: x 13: xv х y y x y x y x x

Figure 6.20 An example of a straightforward string matching.

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU)

String Processing

Algorithms 2018 7 / 18

4 A N

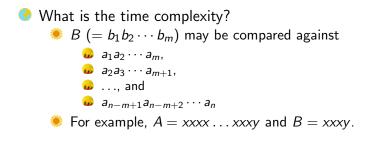
What is the time complexity?

Yih-Kuen Tsay (IM.NTU)

String Processing

Algorithms 2018 8 / 18

3

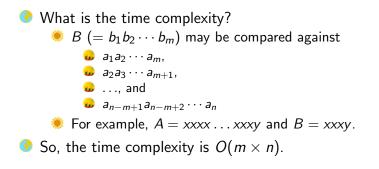


Yih-Kuen Tsay (IM.NTU)

String Processing

Algorithms 2018 8 / 18

E Sac



Yih-Kuen Tsay (IM.NTU)

String Processing

(≧ ▶ ◀ ≧ ▶ ≧ ∽ � < Algorithms 2018 8 / 18

What is the time complexity? $B (= b_1 b_2 \cdots b_m)$ may be compared against $\bigcup_{n = a_1 a_2 \cdots a_m}$ \bigcirc $a_2a_3\cdots a_{m+1}$, 😡 ..., and \bigcup $a_{n-m+1}a_{n-m+2}\cdots a_n$ For example, $A = xxxx \dots xxxy$ and B = xxxy. So, the time complexity is $O(m \times n)$. We will exam the cause of defficiency. We then study an efficient algorithm, which is linear-time with a preprocessing stage.

Yih-Kuen Tsay (IM.NTU)

String Processing

Algorithms 2018 8 / 18

= ~~~

(日) (同) (日) (日) (日)

Matching Against Itself

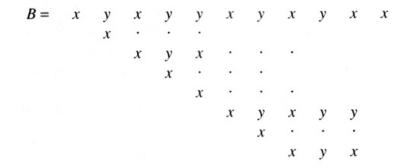


Figure 6.21 Matching the pattern against itself.

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU)

String Processing

Algorithms 2018 9 / 18

3

(日) (同) (日) (日) (日)

The Values of next

Figure 6.22 The values of next.

Source: [Manber 1989].

The value of next[j] tells the length of the longest proper prefix that is equal to a suffix of $b_1b_2 \dots b_{j-1}$.

Yih-Kuen Tsay (IM.NTU)

String Processing

Algorithms 2018 10 / 18

3

The KMP Algorithm

Algorithm String_Match (A, n, B, m); begin

$$j := 1; i := 1;$$

 $Start := 0;$
while $Start = 0$ and $i \le n$ do
if $B[j] = A[i]$ then
 $j := j + 1; i := i + 1$
else
 $j := next[j] + 1;$
if $j = 0$ then
 $j := 1; i := i + 1;$
if $j = m + 1$ then $Start := i - m$
end

Yih-Kuen Tsay (IM.NTU)

Algorithms 2018 11 / 18

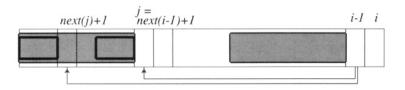


Figure 6.24 Computing next(i).

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU)

String Processing

Algorithms 2018 12 / 18

3

(日) (同) (日) (日) (日)

Algorithm Compute_Next (B, m); begin

$$next[1] := -1; next[2] := 0;$$

for $i := 3$ to m do
 $j := next[i - 1] + 1;$
while $B[i - 1] \neq B[j]$ and $j > 0$ do
 $j := next[j] + 1;$
 $next[i] := j$
nd

e

イロト 不得下 イヨト イヨト 二日

What is its time complexity?

Yih-Kuen Tsay (IM.NTU)

String Processing

Algorithms 2018 14 / 18

- 31

What is its time complexity?

Because of backtracking, *a*; may be compared against

- 31

- What is its time complexity?
 - Because of backtracking, ai may be compared against

However, for these to happen, each of a_{i-j+2}, a_{i-j+3},..., a_{i-1} was compared against the corresponding character in b₁b₂...b_{j-1} just once.

- What is its time complexity?
 - Because of backtracking, ai may be compared against

$$\begin{array}{ccc} & b_j, \\ \hline & b_{j-1}, \\ \hline & \dots, \text{ and} \\ \hline & b_2 \end{array}$$

However, for these to happen, each of $a_{i-j+2}, a_{i-j+3}, \ldots, a_{i-1}$ was compared against the corresponding character in $b_1b_2 \ldots b_{j-1}$ just once.

We may re-assign the costs of comparing a_i against $b_{j-1}, b_{j-2}, \ldots, b_2$ to those of comparing $a_{i-j+2}a_{i-j+3} \ldots a_{i-1}$ against $b_1b_2 \ldots b_{j-1}$.

- 😚 What is its time complexity?
 - Because of backtracking, a_i may be compared against

However, for these to happen, each of $a_{i-i+2}, a_{i-i+3}, \ldots, a_{i-1}$ was compared against the corresponding character in $b_1 b_2 \dots b_{i-1}$ just once.

- We may re-assign the costs of comparing a_i against $b_{j-1}, b_{j-2}, \ldots, b_2$ to those of comparing $a_{i-j+2}a_{i-j+3} \ldots a_{i-1}$ against $b_1 b_2 \dots b_{i-1}$.
- Every a_i is incurred the cost of at most two comparisons.
- So, the time complexity is O(n).

String Editing

Problem

Given two strings $A (= a_1 a_2 \cdots a_n)$ and $B (= b_1 b_2 \cdots b_m)$, find the minimum number of changes required to change A character by character such that it becomes equal to B.

Three types of changes (or edit steps) allowed: (1) insert, (2) delete, and (3) replace.

Let C(i,j) denote the minimum cost of changing A(i) to B(j), where $A(i) = a_1 a_2 \cdots a_i$ and $B(j) = b_1 b_2 \cdots b_j$.

$$C(i,j) = \min \begin{cases} C(i-1,j) + 1 & (\text{deleting } a_i) \\ C(i,j-1) + 1 & (\text{inserting } b_j) \\ C(i-1,j-1) + 1 & (a_i \to b_j) \\ C(i-1,j-1) & (a_i = b_j) \end{cases}$$

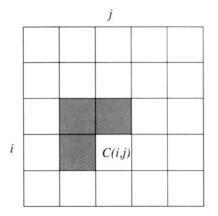


Figure 6.26 The dependencies of C(i, j).

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU)

String Processing

Algorithms 2018 17 / 18

イロト 不得下 イヨト イヨト 二日

Algorithm Minimum_Edit_Distance (A, n, B, m); for i := 0 to n do C[i, 0] := i; for i := 1 to m do C[0, j] := j; for i = 1 to n do for i := 1 to m do x := C[i-1, j] + 1;y := C[i, i-1] + 1;if $a_i = b_i$ then z := C[i-1, j-1]else z := C[i-1, i-1] + 1;C[i, j] := min(x, y, z)

Yih-Kuen Tsay (IM.NTU)

Algorithms 2018 18 / 18

Algorithm Minimum_Edit_Distance (A, n, B, m); for i := 0 to n do C[i, 0] := i; for i := 1 to m do C[0, j] := j; for i := 1 to n do for i := 1 to m do x := C[i-1, j] + 1;y := C[i, i-1] + 1;if $a_i = b_i$ then z := C[i-1, j-1]else z := C[i-1, j-1] + 1;C[i, j] := min(x, y, z)

Its time complexity is clearly O(mn).

Yih-Kuen Tsay (IM.NTU)

String Processing

Algorithms 2018 18 / 18