
Advanced Graph Algorithms
(Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 1 / 31

Strongly Connected Components

A directed graph is strongly connected if there is a directed path
from every vertex to every other vertex.

A strongly connected component (SCC) is a maximal subset of
the vertices such that its induced subgraph is strongly connected
(namely, there is no other subset that contains it and induces a
strongly connected graph).

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 2 / 31

Strongly Connected Components

A directed graph is strongly connected if there is a directed path
from every vertex to every other vertex.

A strongly connected component (SCC) is a maximal subset of
the vertices such that its induced subgraph is strongly connected
(namely, there is no other subset that contains it and induces a
strongly connected graph).

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 2 / 31

Strongly Connected Components (cont.)

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 3 / 31

Strongly Connected Components (cont.)

Lemma (7.11)

Two distinct vertices belong to the same SCC if and only if there is a
circuit containing both of them.

Lemma (7.12)

Each vertex belongs to exactly one SCC.

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 4 / 31

Strongly Connected Components (cont.)

Lemma (7.11)

Two distinct vertices belong to the same SCC if and only if there is a
circuit containing both of them.

Lemma (7.12)

Each vertex belongs to exactly one SCC.

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 4 / 31

Strongly Connected Components (cont.)

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 5 / 31

Strongly Connected Components (cont.)

Source: [Manber 1989].
Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 6 / 31

Strongly Connected Components (cont.)

Algorithm Strongly Connected Components(G , n);
begin

for every vertex v of G do
v .DFS Number := 0;
v .Component := 0;

Current Component := 0; DFS N := n;
while v .DFS Number = 0 for some v do

SCC (v)
end

procedure SCC(v);
begin

v .DFS Number := DFS N ;
DFS N := DFS N − 1;
insert v into Stack ;
v .High := v .DFS Number ;
Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 7 / 31

Strongly Connected Components (cont.)
for all edges (v ,w) do

if w .DFS Number = 0 then
SCC (w);
v .High := max(v .High,w .High)

else if w .DFS Number > v .DFS Number
and w .Component = 0 then

v .High := max(v .High,w .DFS Number)
// max(v .High,w .High) also works

if v .High = v .DFS Number then
Current Component := Current Component + 1;
repeat

remove x from the top of Stack ;
x .component := Current Component

until x = v
end

Time complexity: O(|E |+ |V |).

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 8 / 31

Strongly Connected Components (cont.)
for all edges (v ,w) do

if w .DFS Number = 0 then
SCC (w);
v .High := max(v .High,w .High)

else if w .DFS Number > v .DFS Number
and w .Component = 0 then

v .High := max(v .High,w .DFS Number)
// max(v .High,w .High) also works

if v .High = v .DFS Number then
Current Component := Current Component + 1;
repeat

remove x from the top of Stack ;
x .component := Current Component

until x = v
end

Time complexity:

O(|E |+ |V |).

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 8 / 31

Strongly Connected Components (cont.)
for all edges (v ,w) do

if w .DFS Number = 0 then
SCC (w);
v .High := max(v .High,w .High)

else if w .DFS Number > v .DFS Number
and w .Component = 0 then

v .High := max(v .High,w .DFS Number)
// max(v .High,w .High) also works

if v .High = v .DFS Number then
Current Component := Current Component + 1;
repeat

remove x from the top of Stack ;
x .component := Current Component

until x = v
end

Time complexity: O(|E |+ |V |).
Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 8 / 31

Strongly Connected Components (cont.)

Source: [Manber 1989].
Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 9 / 31

Odd-Length Cycles

Problem

Given a directed graph G = (V ,E), determine whether it contains a
(directed) cycle of odd length.

A cycle must reside completely within a strongly connected
component (SCC), so we exam each SCC separately.

Mark the nodes of an SCC with “even” or “odd” using DFS.

If we have to mark a node that is already marked in the
opposite, then we have found an odd-length cycle.

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 10 / 31

Odd-Length Cycles

Problem

Given a directed graph G = (V ,E), determine whether it contains a
(directed) cycle of odd length.

A cycle must reside completely within a strongly connected
component (SCC), so we exam each SCC separately.

Mark the nodes of an SCC with “even” or “odd” using DFS.

If we have to mark a node that is already marked in the
opposite, then we have found an odd-length cycle.

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 10 / 31

Biconnected Components

An undirected graph is biconnected if there are at least two
vertex-disjoint paths from every vertex to every other vertex.

A graph is not biconnected if and only if there is a vertex whose
removal disconnects the graph. Such a vertex is called an
articulation point.

A biconnected component (BCC) is a maximal subset of the
edges such that its induced subgraph is biconnected (namely,
there is no other subset that contains it and induces a
biconnected graph).

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 11 / 31

Biconnected Components

An undirected graph is biconnected if there are at least two
vertex-disjoint paths from every vertex to every other vertex.

A graph is not biconnected if and only if there is a vertex whose
removal disconnects the graph. Such a vertex is called an
articulation point.

A biconnected component (BCC) is a maximal subset of the
edges such that its induced subgraph is biconnected (namely,
there is no other subset that contains it and induces a
biconnected graph).

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 11 / 31

Biconnected Components

An undirected graph is biconnected if there are at least two
vertex-disjoint paths from every vertex to every other vertex.

A graph is not biconnected if and only if there is a vertex whose
removal disconnects the graph. Such a vertex is called an
articulation point.

A biconnected component (BCC) is a maximal subset of the
edges such that its induced subgraph is biconnected (namely,
there is no other subset that contains it and induces a
biconnected graph).

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 11 / 31

Biconnected Components (cont.)

Source: [Manber 1989].
Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 12 / 31

Biconnected Components (cont.)

Lemma (7.9)

Two distinct edges e and f belong to the same BCC if and only if
there is a cycle containing both of them.

Lemma (7.10)

Each edge belongs to exactly one BCC.

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 13 / 31

Biconnected Components (cont.)

Lemma (7.9)

Two distinct edges e and f belong to the same BCC if and only if
there is a cycle containing both of them.

Lemma (7.10)

Each edge belongs to exactly one BCC.

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 13 / 31

Biconnected Components (cont.)

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 14 / 31

Biconnected Components (cont.)

Source: [Manber 1989].
Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 15 / 31

Biconnected Components (cont.)

Algorithm Biconnected Components(G , v , n);
begin

for every vertex w do w .DFS Number := 0;
DFS N := n;
BC (v)

end

procedure BC(v);
begin

v .DFS Number := DFS N ;
DFS N := DFS N − 1;
insert v into Stack ;
v .High := v .DFS Number ;

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 16 / 31

Biconnected Components (cont.)

for all edges (v ,w) do
insert (v ,w) into Stack ;
if w is not the parent of v then

if w .DFS Number = 0 then
BC (w);
if w .High ≤ v .DFS Number then

remove all edges and vertices
from Stack until v is reached;

insert v back into Stack ;
v .High := max(v .High,w .High)

else
v .High := max(v .High,w .DFS Number)
// max(v .High,w .High) would not work, unlike in SCC

end

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 17 / 31

Biconnected Components (cont.)
procedure BC(v);
begin

v .DFS Number := DFS N ;
DFS N := DFS N − 1;
v .High := v .DFS Number ;
for all edges (v ,w) do

if w is not the parent of v then
insert (v ,w) into Stack ;
if w .DFS Number = 0 then

BC (w);
if w .high ≤ v .DFS Number then

remove all edges from Stack
until (v ,w) is reached;

v .High := max(v .High,w .High)
else

v .High := max(v .High,w .DFS Number)
endYih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 18 / 31

Biconnected Components (cont.)

Source: [Manber 1989].
Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 19 / 31

Even-Length Cycles

Problem

Given a connected undirected graph G = (V ,E), determine whether
it contains a cycle of even length.

Theorem

Every biconnected graph that has more than one edge and is not
merely an odd-length cycle contains an even-length cycle.

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 20 / 31

Even-Length Cycles

Problem

Given a connected undirected graph G = (V ,E), determine whether
it contains a cycle of even length.

Theorem

Every biconnected graph that has more than one edge and is not
merely an odd-length cycle contains an even-length cycle.

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 20 / 31

Even-Length Cycles (cont.)

Source: [Manber 1989].
Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 21 / 31

Network Flows

Consider a directed graph, or network, G = (V ,E) with two
distinguished vertices: s (the source) with indegree 0 and t (the
sink) with outdegree 0.

Each edge e in E has an associated positive weight c(e), called
the capacity of e.

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 22 / 31

Network Flows (cont.)

A flow is a function f on E that satisfies the following two
conditions:

1. 0 ≤ f (e) ≤ c(e).

2.
∑
u

f (u, v) =
∑
w

f (v ,w), for all v ∈ V − {s, t}.

The network flow problem is to maximize the flow f for a
given network G .

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 23 / 31

Network Flows (cont.)

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 24 / 31

Augmenting Paths

An augmenting path w.r.t. a given flow f (of a network G) is
a directed path from s to t consisting of edges from G , but not
necessarily in the same diretion; each of these edges (v , u)
satisfies exactly one of:

1. (v , u) is in the same direction as it is in G , and
f (v , u) < c(v , u). (forward edge)

2. (v , u) is in the opposite direction in G (namely, (u, v) ∈ E),
and f (u, v) > 0. (backward edge)

If there exists an augmenting path w.r.t. a flow f (f admits an
augmenting path), then f is not maximum.

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 25 / 31

Augmenting Paths (cont.)

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 26 / 31

Augmenting Paths (cont.)

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 27 / 31

Properties of Network Flows

Theorem (Augmenting-Path)

A flow f is maximum if and only if it admits no augmenting path.

A cut is a set of edges that separate s from t, or more precisely a set
of the form {(v ,w) ∈ E | v ∈ A and w ∈ B}, where B = V − A
such that s ∈ A and t ∈ B .

Theorem (Max-Flow Min-Cut)

The value of a maximum flow in a network is equal to the minimum
capacity of a cut.

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 28 / 31

Properties of Network Flows (cont.)

Theorem (Integral-Flow)

If the capacities of all edges in the network are integers, then there is
a maximum flow whose value is an integer.

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 29 / 31

Residual Graphs

The residual graph with respect to a network G = (V ,E) and
a flow f is the network R = (V ,F), where F consists of all
forward and backward edges and their capacities are given as
follows:

1. cR(v ,w) = c(v ,w)− f (v ,w) if (v ,w) is a forward edge and
2. cR(v ,w) = f (w , v) if (v ,w) is a backward edge.

An augmenting path is thus a regular directed path from s to t
in the residual graph.

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 30 / 31

Residual Graphs (cont.)

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU) Advanced Graph Algorithms Algorithms 2018 31 / 31

	Strongly Connected Components
	Biconnected Components
	Network Flows

