Homework Assignment \#4

Note

This assignment is due 2:10PM Tuesday, April 10, 2018. Please write or type your answers on A4 (or similar size) paper. Drop your homework by the due time in Yih-Kuen Tsay's mail box on the first floor of Management College Building 2. Late submission will be penalized by 20% for each working day overdue. You may discuss the problems with others, but copying answers is strictly forbidden.

Problems

There are five problems in this assignment, each accounting for 20 points. (Note: problems marked with "(X.XX)" are taken from [Manber 1989] with probable adaptation.)

1. (5.7) Write a program (or modify the code discussed in class) to recover the solution (i.e., enumerate the elements in the solution) to a knapsack problem using the belong flag. You should make your algorithm as efficient as possible.
2. (5.17) The Knapsack Problem that we discussed in class is defined as follows: Given a set S of n items, where the i th item has an integer size $S[i]$, and an integer K, find a subset of the items whose sizes sum to exactly K or determine that no such subset exists.
We have described in class an algorithm to solve the problem. Modify the algorithm to solve a variation of the knapsack problem where each item has an unlimited supply. In your algorithm, please change the type of $P[i, k]$.belong into integer and use it to record the number of copies of item i needed.
3. (5.20) Let $x_{1}, x_{2}, \ldots, x_{n}$ be a set of integers, and let $S=\sum_{i=1}^{n} x_{i}$. Design an algorithm to partition the set into two subsets of equal sum, or determine that it is impossible to do so. The algorithm (presented in suitable pseudocode) should run in time $O(n S)$.
4. (5.22) In the towers of Hanoi puzzle, there are three pegs A, B, and C, with n (generalizing the original eight) disks of different sizes stacked in decreasing order on peg A. The objective is to transfer all the disks on peg A to peg B, moving one disk at a time (from one peg to one of the other two) and never having a larger disk stacked upon a smaller one.
(a) Give an algorithm to solve the puzzle. Explain how induction works here.
(b) Compute the total number of moves in the algorithm. Show the details of your calculation.
5. (5.23) Write a non-recursive program (in suitable pseudocode) that prints the moves of the solution to the towers of Hanoi puzzle.
