
Algorithms [Compiled on November 15, 2019] Fall 2019

Suggested Solutions to Midterm Problems

1. Consider a round-robin tournament among n players. In the tournament, each player
plays once against all other n−1 players. There are no draws, i.e., for a match between A
and B, the result is either A beat B or B beat A. Prove by induction that, after a round-
robin tournament, it is always possible to arrange the n players in an order p1, p2, · · · , pn
such that p1 beat p2, p2 beat p3, · · ·, and pn−1 beat pn. (Note: the “beat” relation, unlike
“≥”, is not transitive.)

Solution. The proof is by induction on the number n of players.

Base case (n = 2): There are exactly two players, say A and B. Either A beat B, in
which case we order them as A,B, or B beat A, in which case we order them as B,A.

Induction step (n > 2): Pick any of the n players, say A. From the induction hypothesis,
the other n− 1 players can be ordered as p1, p2, · · · , pn−1 such that p1 beat p2, p2 beat p3,
· · ·, and pn−2 beat pn−1. We now exam the result of the match played between A and p1.
If A beat p1, then we get a satisfying order A, p1, p2, · · · , pn−1. Otherwise (p1 beat A), we
continue to exam the result of the match played between A and p2. If A beat p2, then we
get a satisfying order p1, A, p2, · · · , pn−1. Otherwise (p2 beat A), we continue as before.
We end up either with p1, p2, · · · , pi−1, A, pi, · · · , pn−1 for some i ≤ n − 1 or eventually
with p1, p2, · · · , pn−1, A if A is beaten by every other player, in particular pn−1. 2

2. Find the error in the following proof that all horses are the same color.

CLAIM: In any set of h horses, all horses are the same color.

PROOF: By induction on h.

Basis (h = 1): In any set containing just one horse, all horses clearly are the same color.

Inductive step (h > 1): We assume that the claim is true for h = k (k ≥ 1) and prove
that it is true for h = k + 1. Take any set H of k + 1 horses. We show that all the horses
in this set are the same color. Remove one horse from this set to obtain the set H1 with
just k horses. By the induction hypothesis, all the horses in H1 are the same color. Now
replace the removed horse and remove a different one to obtain the set H2. By the same
argument, all the horses in H2 are the same color. Therefore all the horses in H must be
the same color, and the proof is complete.

Solution. The inductive step is erroneous, as one cannot prove the claim for the case of
h = 2 assuming it holds for h = 1. For h = 2, the two sets H1 and H2 (resulted from
removing one of the hourses) are both of size 1 and do not have any common member.
The horses in each of the two sets are indeed the same color, since there is just one horse
in each set. However, the two horses from the two sets (which does not overlap) may have
different colors. 2

3. Let G(h) denote the least possible number of nodes contained in an AVL tree of height h.
Let us assume that the empty tree has height −1 and a single-node tree has height 0.

(a) Please give a recurrence relation that characterizes (fully defines) G.

Solution. The recurrence relation can be defined as follows:

1




G(−1) = 0
G(0) = 1
G(h) = G(h− 1) + G(h− 2) + 1, h ≥ 1

2

(b) Based on the recurrence relation, prove that the height of an AVL tree with n nodes
is O(log n).

Solution. A precise solution to G(h) may be derived by establishing the relation G(h) =
F (h + 3) − 1, where F (n) is the n-th Fibonacci number (as defined in Chapter 3.5 of
Manber’s book) for which we already know the closed form; the proof is in fact quite
simple by induction. However, we will prove directly a lower bound for G(h), namely
Ω((32)h), which is good enough to show its exponential growth. The proof is by induction
on h, showing that G(h) ≥ 2

3(32)h, for h ≥ 0.

Base case (h = 0 or h = 1): When h = 0, 2
3(32)0 = 2

3 ≤ 1 = G(0). When h = 1,
2
3(32)1 = 1 ≤ 2 = G(1).

Inductive step (h > 1): For h > 1, G(h) = G(h − 1) + G(h − 2) + 1 and, from the
induction hypothesis, G(h− 1) +G(h− 2) + 1 ≥ 2

3(32)h−1 + 2
3(32)h−2 + 1 ≥ (1 + 2

3)(32)h−2 =
(1 + 2

3)(32)−2(32)h = 20
27(32)h ≥ 2

3(32)h.

Therefore, for an AVL tree of size n, its height h must be such that 2
3(32)h ≤ G(h) ≤ n.

It follows that h ≤ 1
log 1.5 log n + 1 (base 2 logarithm), implying h = O(log n). 2

4. The Knapsack Problem that we discussed in class is defined as follows: Given a set S of n
items, where the ith item has an integer size S[i], and an integer K, find a subset of the
items whose sizes sum to exactly K or determine that no such subset exists.

We have described in class an algorithm (see the Appendix) to solve the problem. Mod-
ify the algorithm to solve a variation of the knapsack problem where each item has an
unlimited supply. In your algorithm, please change the type of P [i, k].belong into integer
and use it to record the number of copies of item i needed. Give an analysis of its time
complexity. The more efficient your algorithm is, the more points you will get for this
problem.

Solution.

Algorithm Knapsack Unlimited (S,K);
begin

P [0, 0].exist := true;
P [0, 0].belong := 0;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := 0

else if k − S[i] ≥ 0 then

2



if P [i, k − S[i]].exist then
P [i, k].exist := true;
P [i, k].belong := P [i, k − S[i]].belong + 1

end

From the main nested for-loops, we see that the complexity is O(nK). (Note: the bound
should be understood as O(n2logK), where logK represents the input size of the number
K.) 2

5. Let x1, x2, · · · , x2n−1, x2n be a sequence of 2n real numbers. Design an algorithm to
partition the numbers into n pairs such that the maximum of the n sums of pair is
minimized. It may be intuitively easy to get a correct solution. You must explain how
the algorithm can be designed using induction.

Solution. We first fix some notations:

• We represent a partition of a list x1, x2, · · · , x2n−1, x2n into n pairs as a set of sets
of two elements {{y1, y2}, {y3, y4}, · · · , {y2n−1, y2n}}, where y1, y2, · · · , y2n−1, y2n is a
permutation of x1, x2, · · · , x2n−1, x2n.

• For a list A of 2n elements, let MinMaxPair(A) denote some partition that meets
the problem requirement for 2n elements.

• Let A \B, where A is a list and B a set, denote the list of elements in A but not in
B. We stipulate that elements in A \B appear in the same order as in A.

We are given a list X = x1, x2, · · · , x2n−1, x2n. If n = 1, i.e., there are only two elements,
the solution is obvious, namely {{x1, x2}}. Now consider the cases of n > 1. Let y1 denote
the smallest element and y2n the largest element in X. We claim that MinMaxPair(X \
{y1, y2n}) ∪ {{y1, y2n}} meets the problem requirement for 2n elements, i.e., the pair
{y1, y2n} is part of an optimal partition. Suppose {yi, yj} is the pair with the largest sum
in MinMaxPair(X \ {y1, y2n}). Pairing y2n with either yi or yj (instead of y1) would
produce a pair whose sum is at least as large as that of {y1, y2n} and that of any pair in
MinMaxPair(X−{y1, y2n}). To compute MinMaxPair(X \{y1, y2n}), we need to solve
the same problem with two elements less and here we invoke the induction hypothesis.

In the above, we select and remove the smallest and the largest elements from the current
list in each step. This would incur a complexity of O(n) for each step, making the
complexity of the whole algorithm O(n2). We can improve this to O(n log n) by sorting
the list right in the beginning before pairing up the elements. So, the algorithm can be
summarized as follows.

(a) Sort the input list X to get Y .

(b) Suppose the current list Y = y1, y2, · · · , y2i−1, y2i (i ≥ 1). Remove and output the
pair {y1, y2i} from Y .

(c) Repeat the previpus step until Y is empty.

2

6. Below is the Mergesort algorithm in pseudocode:

Algorithm Mergesort (X,n);
begin M Sort(1, n) end

3



procedure M Sort (Left,Right);
begin

if Right− Left = 1 then
if X[Left] > X[Right] then swap(X[Left], X[Right])

else if Left 6= Right then
Middle := d12(Left + Right)e;
M Sort(Left,Middle− 1);
M Sort(Middle,Right);
// the merge part
i := Left; j := Middle; k := 0;
while (i ≤Middle− 1) and (j ≤ Right) do

k := k + 1;
if X[i] ≤ X[j] then

TEMP [k] := X[i]; i := i + 1
else TEMP [k] := X[j]; j := j + 1;

if j > Right then
for t := 0 to Middle− 1− i do

X[Right− t] := X[Middle− 1− t]
for t := 0 to k − 1 do

X[Left + t] := TEMP [1 + t]
end

Given the array below as input, what are the contents of array TEMP after the merge
part is executed for the first time and what are the contents of TEMP when the algorithm
terminates? Assume that each entry of TEMP has been initialized to 0 when the algorithm
starts.

1 2 3 4 5 6 7 8 9 10 11 12

6 3 9 7 5 8 11 2 1 12 4 10

Solution.

The contents of array TEMP after the merge part is executed for the first time:

1 2 3 4 5 6 7 8 9 10 11 12

3 6 0 0 0 0 0 0 0 0 0 0

The contents of array TEMP when the algorithm terminates:

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 0 0 0 2

7. Design an in-place algorithm that sorts an array of numbers according to a prescribed
order. The input is a sequence of n numbers x1, x2, · · ·, xn and another sequence a1, a2,
· · ·, an of n distinct numbers between 1 and n (i.e., a1, a2, · · ·, an is a permutation of 1, 2,
· · ·, n), both represented as arrays. Your algorithm should sort the first sequence according
to the order imposed by the permutation as prescribed by the second sequence. For each
i, xi should appear in position ai in the output array. As an example, if x = 23, 9, 5, 17
and a = 4, 1, 3, 2, then the output should be x = 9, 17, 5, 23.

Please describe your algorithm as clearly as possible; it is not necessary to give the pseu-
docode. Remember that the algorithm must be in-place, without using any additional

4



storage for the numbers to be sorted (except some constant space for exchanging two
elements) . Give an analysis of its time complexity. The more efficient your algorithm is,
the more points you will get for this problem.

Solution. Suppose that array X holds the first sequence and array A the second. Sort A
increasingly according to the position values that it stores. Every time when two elements
in A, say ai and aj , are swapped, we also swap the corresponding elements in X, i.e., xi
and xj . Once the sorting of A is completed, the elements in X are also sorted as prescribed
by A. Any in-place sorting algorithm may be used for sorting A. If we use Heapsort, the
complexity is O(n log n).

In fact, there is a much simpler and faster (linear-time) algorithm. In this algorithm, we
scan array A form left to right. Whenever A[i] 6= i, we swap xi and xA[i] and also A[i] and
A[A[i]]. This is repeated until A[i] = i and we then proceed to the next element in array
A. Each swap of xi and xA[i] brings one element in X to its final destination. So, we ever
need to do such swaps at most n times and the check of whether A[i] = i (1 ≤ i ≤ n)
is done at most 2n times in total. The corresponding swaps for A are also performed at
most n times. Therefore, this algorithm runs in O(n) time. 2

8. Below is a variant of the partition algorithm for quicksort.

Algorithm Partition(A,Left,Right);
begin

pivot := A[Left];
L := Left + 1; R := Right;
while L < R do
begin

while A[L] ≤ pivot and L ≤ Right do L := L + 1;
while A[R] > pivot and R ≥ Left do R := R− 1;
if L < R then swap(A[L], A[R]);

end
Middle := R;
swap(A[Left], A[Middle])

end

Draw a decision tree of the algorithm for the case of Partition(A, 1, 3). In the decision
tree, you must indicate (1) which two elements of the original input array are compared
in each internal node and (2) the partition result in each leaf. Please use X1, X2, X3 (not
A[1], A[2], A[3]) to refer to the elements (in this order) of the original input array A.

Solution. (Wayne Zeng)

5



X2 : X1

X3 : X1

X2 : X1

X1 : X1

×X1X2X3

×

X3 : X1

×X2 : X1

X2 : X1

X3 : X1

×X3X1X2

×

×

X3 : X1

X3 : X1

X2 : X1

×X2X1X3

×

X3 : X1

×X3X2X1

≤ >

2

9. Construct a Huffman code tree for a text composed from seven characters A, B, C, D, E,
F, and G with frequencies 15, 4, 2, 7, 21, 3, and 10 respectively.

Solution. (Hung-Yang Lin)

62

25

10

G

15

A

37

16

7

D

9

4

B

5

2

C

3

F

21

E

2

10. The next table is a precomputed table that plays a critical role in the KMP algorithm.
For every position j of the second input string b1b2 . . . bm (to be matched against the first
input string), the value of next [j] tells the length of the longest proper prefix that is equal
to a suffix of b1b2 . . . bj−1; the value of next [0] is set to −1 to fit in the KMP algroithm.
For each of the following instances of next , give a string of letters a and b that gives rise
to the table or argue that no string can possibly produce the table.

6



(a)

1 2 3 4 5 6 7 8 9

−1 0 0 1 1 1 2 3 4

Solution. There are a few strings that may produce this next table, e.g., abaaabaaa
or abaaabaab. 2

(b)

1 2 3 4 5 6 7 8 9

−1 0 1 2 3 4 1 2 3

Solution. No string may give arise to this next table, because, given the values of
next [1..6], next [7] cannot possibly be 1.

Given next [3] = 1, it is clear that b1 = b2. Similarly, given next [3] = 2, we have
b1b2 = b2b3 and hence b2 = b3. Reasoning along this line, we have b1 = b2 = b3 =
b4 = b5. The letter b6 is either equal to b5 or not equal to b5. If b6 = b5, then
b1b2b3b4b5 = b2b3b4b5b6 and hence next [7] should be 5. If b6 6= b5, no prefix of
b1b2b3b4b5 can possibly be equal to any suffix of b2b3b4b5b6 and hence next [7] should
be 0. In either case, next [7] is not equal to 1. 2

Appendix

• Below is an algorithm for determining whether a solution to the (original) Knapsack
Problem exists.

Algorithm Knapsack (S,K);
begin

P [0, 0].exist := true;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := false

else if k − S[i] ≥ 0 then
if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := true

end

• Below is an alternative algorithm for partition in the Quicksort algorithm:

Partition (X,Left ,Right);
begin

pivot := X[left ];
i := Left ;
for j := Left + 1 to Right do

7



if X[j] < pivot then i := i + 1;
swap(X[i], X[j]);

Middle := i;
swap(X[Left ], X[Middle])

end

8


