

Data Structures

A Supplement (Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

Data Structures

< 토 ▶ < 토 ▶ 토 ∽ Q (~ Algorithms 2019 1 / 16

イロト イポト イヨト イヨト

- A (max) heap is a binary tree whose keys satisfy the heap property: the key of every node is greater than or equal to the key of any of its children.
- It supports the two basic operations of a priority queue:

A (max) heap is a binary tree whose keys satisfy the heap property:

the key of every node is greater than or equal to the key of any of its children.

- It supports the two basic operations of a priority queue:
 - **Insert**(x): insert the key x into the heap.
 - Remove(): remove and return the largest key from the heap.

- A binary tree can be represented implicitly by an array A as follows:
 - 1. The root is stored in A[1].
 - 2. The left child of A[i] is stored in A[2i] and the right child is stored in A[2i + 1].

Heaps (cont.)

Algorithm Remove_Max_from_Heap (A, n); begin

if n = 0 then print "the heap is empty" else $Top_of_the_Heap := A[1];$ A[1] := A[n]; n := n - 1;parent := 1: child := 2: while child < n-1 do if A[child] < A[child + 1] then child := child + 1: if A[child] > A[parent] then swap(A[parent], A[child]); parent := child: child := 2 * childelse child := n

end

Heaps (cont.)

Algorithm Insert_to_Heap (A, n, x); begin

```
n := n + 1:
A[n] := x;
child := n:
parent := n div 2;
while parent > 1 do
      if A[parent] < A[child] then
         swap(A[parent], A[child]);
         child := parent;
         parent := parent div 2
      else parent := 0
```

end

Yih-Kuen Tsay (IM.NTU)

AVL Trees

Definition

An AVL tree is a binary search tree such that, for every node, the difference between the heights of its left and right subtrees is at most 1 (the height of an empty tree is defined as 0).

This definition guarantees a maximal height of $O(\log n)$ for any AVL tree of n nodes.

AVL Trees (cont.)

Figure: Insertions that invalidate the AVL property.

Source: redrawn from [Manber 1989, Figure 4.13].

Yih-Kuen Tsay (IM.NTU)

Data Structures

AVL Trees (cont.)

Figure: A single rotation: (a) before; (b) after.

Source: redrawn from [Manber 1989, Figure 4.14].

Yih-Kuen Tsay (IM.NTU)

Data Structures

Algorithms 2019 8 / 16

AVL Trees (cont.)

Figure: A double rotation: (a) before; (b) after. Source: redrawn from [Manber 1989, Figure 4.15].

Yih-Kuen Tsay (IM.NTU)

Data Structures

Algorithms 2019 9 / 16

- ∢ /⊐ >

Union-Find

- There are *n* elements x_1, x_2, \dots, x_n divided into groups. Initially, each element is in a group by itself.
- Two operations on the elements and groups:
 - *find*(A): returns the name of A's group.
 - *union*(A, B): combines A's and B's groups to form a new group with a unique name.
- To tell if two elements are in the same group, one may issue a find operation for each element and see if the returned names are the same.

Union-Find (cont.)

nil

Figure: The representation for the union-find problem. Source: redrawn from [Manber 1989, Figure 4.16].

Yih-Kuen Tsay (IM.NTU)

Data Structures

Algorithms 2019 11 / 16

3

Balancing

- The root also stores the number of elements in (i.e., the size of) its group.
- To balance the tree resulted from a union operation, let the smaller group join the larger group and update the size of the larger group accordingly.

Theorem (Theorem 4.2)

If balancing is used, then any tree of height h must contain at least 2^{h} elements.

Any sequence of m find or union operations (where m ≥ n) takes O(m log n) steps.

Yih-Kuen Tsay (IM.NTU)

Data Structures

Algorithms 2019 12 / 16

Union-Find (cont.)

Figure: Path compression: (a) before; (b) after.

Source: redrawn from [Manber 1989, Figure 4.17].

Yih-Kuen Tsay (IM.NTU)

Algorithms 2019 13 / 16

(日) (同) (日) (日) (日)

Theorem (Theorem 4.3)

If both balancing and path compression are used, any sequence of m find or union operations (where $m \ge n$) takes $O(m \log^* n)$ steps.

The value of $\log^* n$ intuitively equals the number of times that one has to apply log to n to bring its value down to 1.

イロト イポト イヨト イヨト 二日

Code for Union-Find


```
Algorithm Union_Find_Init(A,n);
begin
  for i := 1 to n do
      A[i].parent := nil;
      A[i].size := 1
end
Algorithm Find(a);
begin
  if A[a].parent <> nil then
     A[a].parent := Find(A[a].parent);
     Find := A[a].parent;
  else
     Find := a
end
                                      ▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで
```

Yih-Kuen Tsay (IM.NTU)

Algorithms 2019 15 / 16

Code for Union-Find (cont.)


```
Algorithm Union(a,b);
begin
 x := Find(a);
  y := Find(b);
  if x \ll y then
     if A[x].size > A[y].size then
        A[y].parent := x;
        A[x].size := A[x].size + A[y].size;
     else
        A[x].parent := y;
        A[y].size := A[y].size + A[x].size
end
```

Yih-Kuen Tsay (IM.NTU)

Algorithms 2019 16 / 16