
Algorithms 2019: Design by Induction

(Based on [Manber 1989])

Yih-Kuen Tsay

October 1, 2019

1 Introduction

Introduction

• It is not necessary to design the steps required to solve a problem from scratch.

• It is sufficient to guarantee the following:

1. It is possible to solve one small instance or a few small instances of the problem. (base case)

2. A solution to every problem/instance can be constructed from solutions to smaller problems/instances.
(inductive step)

2 Evaluating Polynomials

Evaluating Polynomials

Problem 1. Given a sequence of real numbers an, an−1, · · · , a1, a0, and a real number x, compute the
value of the polynomial

Pn(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0.

Motivation: different approaches to the inductive step may result in algorithms of very different time
complexities.

Evaluating Polynomials (cont.)

• Let Pn−1(x) = an−1x
n−1 + · · ·+ a1x + a0.

• Induction hypothesis (first attempt)

We know how to evaluate a polynomial represented by the input an−1, · · · , a1, a0, at the point x, i.e.,
we know how to compute Pn−1(x).

• Pn(x) = anx
n + Pn−1(x).

• Number of multiplications:

n + (n− 1) + · · ·+ 2 + 1 =
n(n + 1)

2
.

1

Evaluating Polynomials (cont.)

• Induction hypothesis (second attempt)

We know how to compute Pn−1(x), and we know how to compute xn−1.

• Pn(x) = anx(xn−1) + Pn−1(x).

• Number of multiplications: 2n− 1.

Evaluating Polynomials (cont.)

• Let P ′n−1(x) = anx
n−1 + an−1x

n−2 + · · ·+ a1.

• Induction hypothesis (final attempt)

We know how to evaluate a polynomial represented by the coefficients an, an−1, · · · , a1, at the point
x, i.e., we know how to compute P ′n−1(x).

• Pn(x) = P ′n(x) = P ′n−1(x) · x + a0.

Evaluating Polynomials (cont.)

• More generally, P ′0(x) = an

P ′i (x) = P ′i−1(x) · x + an−i, for 1 ≤ i ≤ n

• Number of multiplications: n.

Evaluating Polynomials (cont.)

Algorithm Polynomial Evaluation (ā, x);
begin

P := an;
for i := 1 to n do

P := x ∗ P + an−i
end

This algorithm is known as Horner’s rule.

3 Maximal Induced Subgraph

Maximal Induced Subgraph

Problem 2. Given an undirected graph G = (V,E) and an integer k, find an induced subgraph H = (U,F)
of G of maximum size such that all vertices of H have degree ≥ k (in H), or conclude that no such induced
subgraph exists.

Design Idea: in the inductive step, we try to remove one vertex (that cannot possibly be part of the
solution) to get a smaller instance.

2

Maximal Induced Subgraph (cont.)

• Recursive:

Algorithm Max Ind Subgraph (G, k);
begin

if the degree of every vertex of G ≥ k then
Max Ind Subgraph := G;

else let v be a vertex of G with degree < k;
Max Ind Subgraph := Max Ind Subgraph(G− v, k);

end

/* G− v denotes the graph obtained from G by removing vertex v and every edge incident to v. */

• Iterative:

Algorithm Max Ind Subgraph (G, k);
begin

while the degree of some vertex v of G < k do
G := G− v;

Max Ind Subgraph := G;
end

4 One-to-One Mapping

One-to-One Mapping

Problem 3. Given a finite set A and a mapping f from A to itself, find a subset S ⊆ A with the maximum
number of elements, such that (1) the function f maps every element of S to another element of S (i.e., f
maps S into itself), and (2) no two elements of S are mapped to the same element (i.e., f is one-to-one
when restricted to S).

Design Idea: similar to the previous problem; in the inductive step, we try to remove one element (that
cannot possibly be part of the solution) to get a smaller instance.

An element that is not mapped to may be removed.

One-to-One Mapping (cont.)

Algorithm Mapping (f, n);
begin

S := A;
for j := 1 to n do c[j] := 0;
for j := 1 to n do increment c[f [j]];
for j := 1 to n do

if c[j] = 0 then put j in Queue;
while Queue not empty do

remove i from the top of Queue;
S := S − {i};
decrement c[f [i]];
if c[f [i]] = 0 then put f [i] in Queue

end

3

5 Celebrity

Celebrity

Problem 4. Given an n × n adjacency matrix, determine whether there exists an i (the “celebrity”) such
that all the entries in the i-th column (except for the ii-th entry) are 1, and all the entries in the i-th row
(except for the ii-th entry) are 0.

Note: A celebrity corresponds to a sink of the directed graph.

Note: Every directed graph has at most one sink.

/* Proof by contradiction. */

Motivation: the trivial solution has a time complexity of O(n2). Can we do better, in O(n)?

To achieve O(n) time, we must reduce the problem size by at least one in constant time.

Celebrity (cont.)
Basic idea: check whether i knows j.

In either case, one of the two may be eliminated.

/* If i knows j, then i is not a celebrity. If i does not know j, then j is not a celebrity. */

The O(n) algorithm proceeds in two stages:

• Eliminate a node every round until only one is left.

/* The node that remains is not necessarily a celebrity, as we have not checked whether it knows any
previously deleted node or the other way around. */

• Check whether the remaining one is truly a celebrity.

Celebrity (cont.)

Algorithm Celebrity (Know);
begin

i := 1;
j := 2;
next := 3;
while next ≤ n + 1 do

if Know[i, j] then i := next
else j := next;

next := next + 1;
if i = n + 1 then candidate := j

else candidate := i;

4

Celebrity (cont.)

wrong := false;
k := 1;
Know[candidate, candidate] := false;
while not wrong and k ≤ n do

if Know[candidate, k] then wrong := true;
if not Know[k, candidate] then

if candidate 6= k then wrong := true;
k := k + 1;

if not wrong then celebrity := candidate
else celebrity := 0;

end

6 The Skyline Problem

The Skyline Problem

Problem 5. Given the exact locations and shapes of several rectangular buildings in a city, draw the skyline
(in two dimension) of these buildings, eliminating hidden lines.

Motivation: different approaches to the inductive step may result in algorithms of very different time
complexities.

Compare: adding buildings one by one to an existing skyline vs. merging two skylines of about the same
size

The Skyline Problem

• Adding one building at a time: {
T (1) = O(1)

T (n) = T (n− 1) +O(n), n ≥ 2

Time complexity: O(n2).

/* T (n) = T (n− 1) +O(n) = (T (n− 2) +O(n− 1)) +O(n) = · · · = O(1) +O(2) + · · ·+O(n) = O(n2).
*/

• Merging two skylines every round: {
T (1) = O(1)

T (n) = 2T (n
2
) +O(n), n ≥ 2

Time complexity: O(n log n).

/* Apply the master theorem. Here, a = 2, b = 2, k = 1, and bk = 2 = a. */

Representation of a Skyline

Input: (1,11,5), (2,6,7), (3,13,9), (12,7,16), (14,3,25), (19,18,22), (23,13,29), and (24,4,28).

5

0 5 10 15 20 25 30

Source: adapted from [Manber 1989, Figure 5.5(a)].

Representation of a Skyline (cont.)

Representation: (1,11,3,13,9,0,12,7,16,3,19,18,22,3,23,13,29).

0 5 10 15 20 25 30

Source: adapted from [Manber 1989, Figure 5.5(b)].

Adding a Building

• Add (5,9,26) to (1,11,3,13,9,0,12,7,16,3,19,18,22,3,23,13,29).

0 5 10 15 20 25 30

Source: adapted from [Manber 1989, Figure 5.6].

• The skyline becomes (1,11,3,13,9,9,19,18,22,9,23,13,29).

6

Merging Two Skylines

0 5 10 15 20 25 30

Source: adapted from [Manber 1989, Figure 5.7].

7 Balance Factors in Binary Trees

Balance Factors in Binary Trees

Problem 6. Given a binary tree T with n nodes, compute the balance factors of all nodes.

The balance factor of a node is defined as the difference between the height of the node’s left subtree and
the height of the node’s right subtree.

Motivation: an example of why we must strengthen the hypothesis (and hence the problem to be solved).

Balance Factors in Binary Trees (cont.)

3/0

2/0

1/1 1/− 1

2/− 2

1/1

Figure: A binary tree. The numbers represent h/b, where h is the height and b is the balance factor.
Source: redrawn from [Manber 1989, Figure 5.8].

Balance Factors in Binary Trees (cont.)

• Induction hypothesis

We know how to compute balance factors of all nodes in trees that have < n nodes.

• Stronger induction hypothesis

We know how to compute balance factors and heights of all nodes in trees that have < n nodes.

7

8 Maximum Consecutive Subsequence

Maximum Consecutive Subsequence

Problem 7. Given a sequence x1, x2, · · · , xn of real numbers (not necessarily positive) find a subsequence
xi, xi+1, · · · , xj (of consecutive elements) such that the sum of the numbers in it is maximum over all
subsequences of consecutive elements.

Example: In the sequence (2,−3, 1.5,−1, 3,−2,−3, 3), the maximum subsequence is (1.5,−1, 3).

Motivation: another example of strengthening the hypothesis.

Maximum Consecutive Subsequence (cont.)

• Induction hypothesis

We know how to find the maximum subsequence in sequences of size < n.

• Stronger induction hypothesis

We know how to find, in sequences of size < n, the maximum subsequence overall and the maximum
subsequence that is a suffix.

(Reasoning: the maximum subsequence of problem size n is obtained either directly from the maximum
subsequence of problem size n−1 or from appending the n-th element to the maximum suffix of problem
size n− 1.)

Maximum Consecutive Subsequence (cont.)

Algorithm Max Consec Subseq (X,n);
begin

Global Max := 0;
Suffix Max := 0;
for i := 1 to n do

if x[i] + Suffix Max > Global Max then
Suffix Max := Suffix Max + x[i];
Global Max := Suffix Max

else if x[i] + Suffix Max > 0 then
Suffix Max := Suffix Max + x[i]

else Suffix Max := 0
end

9 The Knapsack Problem

The Knapsack Problem

Problem 8. Given an integer K and n items of different sizes such that the i-th item has an integer size
ki, find a subset of the items whose sizes sum to exactly K, or determine that no such subset exists.

Design Idea: use strong induction so that solutions to all smaller instances may be used.

8

The Knapsack Problem (cont.)

• Let P (n,K) denote the problem where n is the number of items and K is the size of the knapsack.

• Induction hypothesis

We know how to solve P (n− 1,K).

• Stronger induction hypothesis

We know how to solve P (n− 1, k), for all 0 ≤ k ≤ K.

(Reasoning: P (n,K) has a solution if either P (n − 1,K) has a solution or P (n − 1,K − kn) does,
provided K − kn ≥ 0.)

The Knapsack Problem (cont.)
An example of the table constructed for the knapsack problem:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

O - - - - - - - - - - - - - - - -

k1= 2 O - I - - - - - - - - - - - - - -

k2 = 3 O - O I - I - - - - - - - - - - -

k3 = 5 O - O O - O - I I - I - - - - - -

k4 = 6 O - O O - O I O O I O I - I I - I

“I”: a solution containing this item has been found.
“O”: a solution without this item has been found.
“-”: no solution has yet been found.
Source: adapted from [Manber 1989, Figure 5.11].

The Knapsack Problem (cont.)

Algorithm Knapsack (S,K);
P [0, 0].exist := true;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := false

else if k − S[i] ≥ 0 then
if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := true

9

