

Advanced Graph Algorithms

(Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Strongly Connected Components

A directed graph is *strongly connected* if there is a directed path from every vertex to every other vertex.

Strongly Connected Components

- A directed graph is *strongly connected* if there is a directed path from every vertex to every other vertex.
- A strongly connected component (SCC) is a maximal subset of the vertices such that its induced subgraph is strongly connected (namely, there is no other subset that contains it and induces a strongly connected graph).

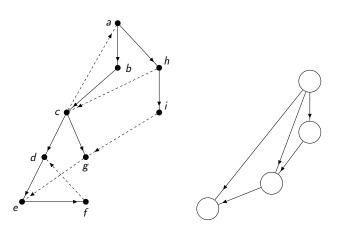


Figure: A directed graph and its strongly connected component graph.

Source: redrawn from [Manber 1989, Figure 7.30].

Lemma (7.11)

Two distinct vertices belong to the same SCC if and only if there is a circuit containing both of them.

Lemma (7.11)

Two distinct vertices belong to the same SCC if and only if there is a circuit containing both of them.

Lemma (7.12)

Each vertex belongs to exactly one SCC.

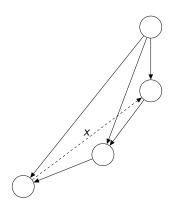


Figure: Adding an edge connecting two different strongly connected components.

Source: redrawn from [Manber 1989, Figure 7.31].

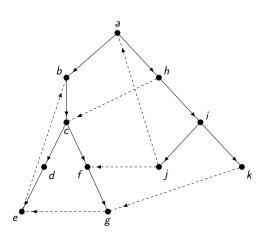


Figure: The effect of cross edges.

Source: redrawn from [Manber 1989, Figure 7.32].


```
Algorithm Strongly_Connected_Components(G, n);
begin
  for every vertex v of G do
      v.DFS_Number := 0:
      v.Component := 0;
  Current\_Component := 0; DFS\_N := n;
  while v.DFS Number = 0 for some v do
      SCC(v)
end
procedure SCC(v);
```

```
 \begin{array}{l} \textbf{begin} \\ v.DFS\_Number := DFS\_N; \\ DFS\_N := DFS\_N - 1; \\ \text{insert } v \text{ into } Stack; \end{array}
```

 $v.High := v.DFS_Number;$


```
for all edges (v, w) do
     if w.DFS Number = 0 then
        SCC(w);
        v.High := max(v.High, w.High)
     else if w.DFS Number > v.DFS Number
             and w.Component = 0 then
          v.High := max(v.High, w.DFS_Number)
          // \max(v.High, w.High) also works
  if v.High = v.DFS_Number then
     Current\_Component := Current\_Component + 1;
     repeat
        remove x from the top of Stack;
        x.component := Current_Component
     until x = v
end
```

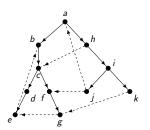


```
for all edges (v, w) do
  if w.DFS Number = 0 then
     SCC(w);
     v.High := max(v.High, w.High)
  else if w.DFS Number > v.DFS Number
          and w.Component = 0 then
        v.High := max(v.High, w.DFS_Number)
        // \max(v.High, w.High) also works
if v.High = v.DFS_Number then
  Current\_Component := Current\_Component + 1;
  repeat
     remove x from the top of Stack;
     x.component := Current_Component
  until x = v
```

end


```
for all edges (v, w) do
  if w.DFS Number = 0 then
     SCC(w);
     v.High := max(v.High, w.High)
  else if w.DFS Number > v.DFS Number
          and w.Component = 0 then
        v.High := max(v.High, w.DFS_Number)
        // \max(v.High, w.High) also works
if v.High = v.DFS_Number then
  Current\_Component := Current\_Component + 1;
  repeat
     remove x from the top of Stack;
     x.component := Current_Component
  until x = v
```

end



	а	Ь	С	d	е	f	g	h	i	i	k
	11	10	9	8	7	6	5	4	3	2	1
a	11	-	-	-	-	-	-	-	-	-	-
Ь	11	10	-	-	-	-	-	-	-	-	-
С	11	10	9	-	-	-	-	-	-	-	-
d	11	10	9	8	-	-	-	-	-	-	-
e	11	10	9	8	10	-	-	-	-	-	-
d	11	10	9	10	10	-	-	-	-	-	-
С	11	10	10	10	10	-	-	-	-	-	-
f	11	10	10	10	10	6	-	-	-	-	-
g	11	10	10	10	10	6	7	-	-	-	-
f	11	10	10	10	10	7	7	-	-	-	-
С	11	10	10	10	10	7	7	-	-	-	-
(b)	11	10	10	10	10	7	7	-	-	-	-
а	11	10	10	10	10	7	7	-	-	-	-
h	11	10	10	10	10	7	7	4	-	-	-
i	11	10	10	10	10	7	7	4	3	-	-
j i	11	10	10	10	10	7	7	4	3	11	-
	11	10	10	10	10	7	7	4	11	11	-
k	11	10	10	10	10	7	7	4	11	11	1
i	11	10	10	10	10	7	7	4	11	11	1
h	11	10	10	10	10	7	7	11	11	11	1
(a)	11	10	10	10	10	7	7	11	11	11	1

Figure: An example of computing *High* values and strongly connected components.

Source: redrawn from [Manber 1989, Figure 7.34].

Odd-Length Cycles

Problem

Given a directed graph G = (V, E), determine whether it contains a (directed) cycle of odd length.

Odd-Length Cycles

Problem

Given a directed graph G = (V, E), determine whether it contains a (directed) cycle of odd length.

- A cycle must reside completely within a strongly connected component (SCC), so we exam each SCC separately.
- → Mark the nodes of an SCC with "even" or "odd" using DFS.
- If we have to mark a node that is already marked in the opposite, then we have found an odd-length cycle.

Biconnected Components

An undirected graph is *biconnected* if there are at least two vertex-disjoint paths from every vertex to every other vertex.

Biconnected Components

- An undirected graph is biconnected if there are at least two vertex-disjoint paths from every vertex to every other vertex.
- A graph is *not* biconnected if and only if there is a vertex whose removal disconnects the graph. Such a vertex is called an *articulation point*.

Biconnected Components

- An undirected graph is biconnected if there are at least two vertex-disjoint paths from every vertex to every other vertex.
- A graph is *not* biconnected if and only if there is a vertex whose removal disconnects the graph. Such a vertex is called an *articulation point*.
- A biconnected component (BCC) is a maximal subset of the edges such that its induced subgraph is biconnected (namely, there is no other subset that contains it and induces a biconnected graph).

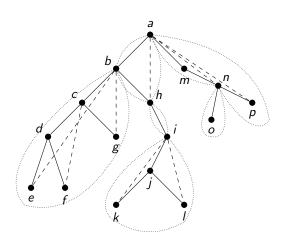


Figure: The structure of a nonbiconnected graph.

Source: redrawn from [Manber 1989, Figure 7.25].

Lemma (7.9)

Two distinct edges e and f belong to the same BCC if and only if there is a cycle containing both of them.

Lemma (7.9)

Two distinct edges e and f belong to the same BCC if and only if there is a cycle containing both of them.

Lemma (7.10)

Each edge belongs to exactly one BCC.

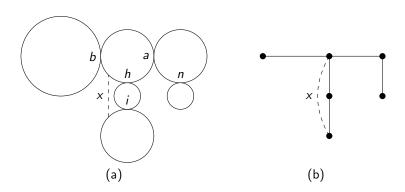


Figure: An edge that connects two different biconnected components. (a) The components corresponding to the graph of Figure 7.25 with the articulation points indicated. (b) The biconnected component tree.

Source: redrawn from [Manber 1989, Figure 7.26].

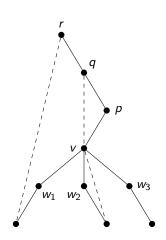


Figure: Computing the High values.

Source: redrawn from [Manber 1989, Figure 7.27].


```
Algorithm Biconnected_Components(G, v, n);
begin

for every vertex w do w.DFS_Number := 0;

DFS_N := n;

BC(v)
end
```

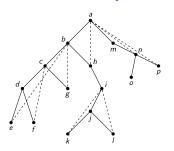
```
procedure BC(v);
begin
  v.DFS_Number := DFS_N;
  DFS_N := DFS_N - 1;
insert v into Stack;
  v.High := v.DFS_Number;
```



```
for all edges (v, w) do
  insert (v, w) into Stack;
  if w is not the parent of v then
     if w.DFS Number = 0 then
        BC(w);
        if w.High < v.DFS_Number then
           remove all edges and vertices
              from Stack until v is reached:
           insert v back into Stack:
        v.High := max(v.High, w.High)
     else
        v.High := max(v.High, w.DFS_Number)
        // max(v.High, w.High) would not work, unlike in SCC
```

end


```
procedure BC(v);
begin
  v.DFS_Number := DFS_N:
  DFS_N := DFS_N - 1:
  v.High := v.DFS_Number;
  for all edges (v, w) do
     if w is not the parent of v then
        insert (v, w) into Stack;
        if w.DFS Number = 0 then
           BC(w);
          if w.high < v.DFS_Number then
             remove all edges from Stack
                until (v, w) is reached;
           v.High := max(v.High, w.High)
        else
           v.High := max(v.High, w.DFS_Number)
```

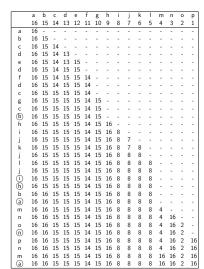


Figure: An example of computing the *High* values and biconnected components.

Source: redrawn from [Manber 1989, Figure 7.29].

Even-Length Cycles

Problem

Given a connected undirected graph G = (V, E), determine whether it contains a cycle of even length.

Even-Length Cycles

Problem

Given a connected undirected graph G = (V, E), determine whether it contains a cycle of even length.

Theorem

Every biconnected graph that has more than one edge and is not merely an odd-length cycle contains an even-length cycle.

Even-Length Cycles (cont.)

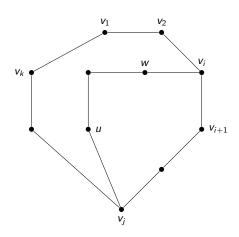


Figure: Finding an even-length cycle.

Source: redrawn from [Manber 1989, Figure 7.35].

Network Flows

- Consider a directed graph, or network, G = (V, E) with two distinguished vertices: s (the source) with indegree 0 and t (the sink) with outdegree 0.
- \odot Each edge e in E has an associated positive weight c(e), called the *capacity* of e.

Network Flows (cont.)

- A **flow** is a function f on E that satisfies the following two conditions:
 - 1. $0 \le f(e) \le c(e)$.
 - 2. $\sum_{u} f(u, v) = \sum_{w} f(v, w)$, for all $v \in V \{s, t\}$.
- The network flow problem is to maximize the flow f for a given network G.

Network Flows (cont.)

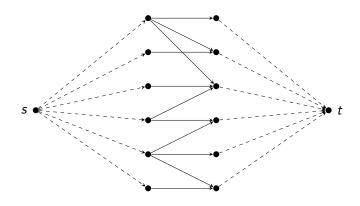


Figure: Reducing bipartite matching to network flow. Every edge has capacity 1.

Source: redrawn from [Manber 1989, Figure 7.39].

24 / 31

Augmenting Paths

- An augmenting path w.r.t. a given flow f (of a network G) is a directed path from s to t consisting of edges from G, but not necessarily in the same direction; each of these edges (v, u) satisfies exactly one of:
 - 1. (v, u) is in the same direction as it is in G, and f(v, u) < c(v, u). (forward edge)
 - 2. (v, u) is in the opposite direction in G (namely, $(u, v) \in E$), and f(u, v) > 0. (backward edge)
- If there exists an augmenting path w.r.t. a flow f (f admits an augmenting path), then f is not maximum.

Augmenting Paths (cont.)

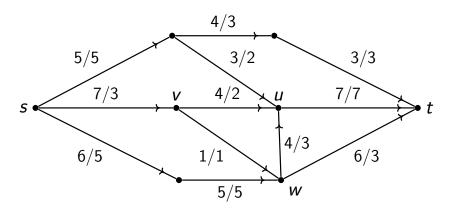


Figure: An example of a network with a (nonmaximum) flow. Source: redrawn from [Manber 1989, Figure 7.40].

Augmenting Paths (cont.)

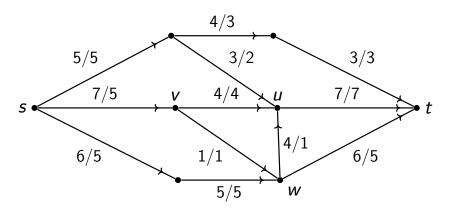


Figure: The result of augmenting the flow of Figure 7.40.

Source: redrawn from [Manber 1989, Figure 7.41].

Properties of Network Flows

Theorem (Augmenting-Path)

A flow f is maximum if and only if it admits no augmenting path.

A *cut* is a set of edges that separate s from t, or more precisely a set of the form $\{(v,w) \in E \mid v \in A \text{ and } w \in B\}$, where B = V - A such that $s \in A$ and $t \in B$.

Theorem (Max-Flow Min-Cut)

The value of a maximum flow in a network is equal to the minimum capacity of a cut.

Properties of Network Flows (cont.)

Theorem (Integral-Flow)

If the capacities of all edges in the network are integers, then there is a maximum flow whose value is an integer.

Residual Graphs

- The **residual graph** with respect to a network G = (V, E) and a flow f is the network R = (V, F), where F consists of all forward and backward edges and their capacities are given as follows:
 - 1. $c_R(v, w) = c(v, w) f(v, w)$ if (v, w) is a forward edge and
 - 2. $c_R(v, w) = f(w, v)$ if (v, w) is a backward edge.
- An augmenting path is thus a regular directed path from s to t in the residual graph.

Residual Graphs (cont.)

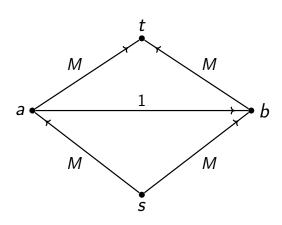


Figure: A bad example of network flow.

Source: redrawn from [Manber 1989, Figure 7.42].