
Algorithms [Compiled on September 23, 2019] Fall 2019

Homework Assignment #2

Note

This assignment is due 2:10PM Tuesday, October 1, 2019. Please write or type your answers on
A4 (or similar size) paper. Drop your homework by the due time in Yih-Kuen Tsay’s mail box
on the first floor of Management College Building 2. Late submission will be penalized by 20%
for each working day overdue. You may discuss the problems with others, but copying answers
is strictly forbidden.

Problems

There are five problems in this assignment, each accounting for 20 points. You must use
induction for all proofs. (Note: problems marked with “(X.XX)” are taken from [Manber 1989]
with probable adaptation.)

1. Consider again the inductive definition in HW#1 for the set of all binary trees that store
non-negative integer key values:

(a) The empty tree, denoted ⊥, is a binary tree.

(b) If tl and tr are binary trees, then node(k, tl, tr), where k ∈ Z and k ≥ 0, is also a
binary tree.

Refine the definition, as you did for Problem 5(c) of HW#1, to include only binary search
trees such that an inorder traversal of a binary search tree produces a list of all stored
key values in increasing order. Then, define inductively a function that outputs the rank
of a given key value (the position of the key value in the aforementioned sorted list) if it
is stored in the tree, or 0 if the key is not in the tree.

2. (2.24) We can define anti-Gray codes in the following way. Instead of minimizing the
difference between two consecutive strings, we can try to maximize it. Is it possible to
design an encoding for any even number of objects such that each pair of two consecutive
strings differ by k bits (where k is the number of bits in each string)? How about k − 1
bits (or k − 2, k − 3, etc.)? If it is possible, find an efficient construction.

3. Consider the following recurrence relation:
T (0) = 0
T (1) = 1
T (h) = T (h− 1) + T (h− 2) + 1, h ≥ 2

Prove by induction the relation T (h) = F (h + 2) − 1, where F (n) is the n-th Fibonacci
number (F (1) = 1, F (2) = 1, and F (n) = F (n− 1) + F (n− 2), for n ≥ 3).

4. (2.30) A full binary tree is defined inductively as follows. A full binary tree of height
0 consists of 1 node which is the root. A full binary tree of height h + 1 consists of two
full binary trees of height h whose roots are connected to a new root. Let T be a full
binary tree of height h. The height of a node in T is h minus the node’s distance from
the root (e.g., the root has height h, whereas a leaf has height 0). Prove that the sum of
the heights of all the nodes in T is 2h+1 − h− 2.

1



5. Consider the following algorithm for computing the square of the input number, which is
assumed to be a positive integer.

Algorithm mySquare(n);
begin

// assume that n > 0
x := n;
y := 0;
while x > 0 do

y := y + 2× x− 1;
x := x− 1

od;
mySquare := y

end

State a suitable loop invariant for the main loop and prove its correctness.

2


