Homework 1

蘇俊杰、劉韋成、曾守瑜

(2.10) Find an expression for the sum of the *i*-th row of the following triangle, which is called the **Pascal triangle**, and prove the correctness of your claim. The sides of the triangle are 1s, and each other entry is the sum of the two entries immediately above it.

[Claim] The sum of the i-th row of the Pascal triangle is 2^{i-1} [Base Case] (i=1) $2^{1-1} = 1$ [Inductive Step]

Let the elements of k^{th} row be $a_1, a_2, ..., a_k$ and the sum of k^{th} row be 2^{k-1} .

The sum of
$$(k+1)^{th}$$
 row
= $a_1 + (a_1 + a_2) + (a_2 + a_3) + ... + (a_{k-1} + a_k) + a_k$
= $2 * (a_1 + a_2 + ... + a_{k-1} + a_k)$
= $2 * 2^{k-1}$
= 2^k
= $2^{(k+1)-1}$

The Harmonic series H(k) is defined by $H(k) = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{k-1} + \frac{1}{k}$. Prove that $H(2^n) \ge 1 + \frac{n}{2}$, for all $n \ge 0$ (which implies that H(k) diverges).

[Base Case] (n=0)
$$H(2^0) = H(1) = 1 \ge 1 + \frac{0}{2} = 1$$

[Induction Step] $H(2^{n+1}) = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^n} + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{n+1}}$
 $\ge 1 + \frac{n}{2} + (\frac{1}{2^{n+1}} + \frac{1}{2^{n+2}} + \dots + \frac{1}{2^{n+1}})$
 $\ge 1 + \frac{n}{2} + (\frac{1}{2^{n+1}} + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{n+1}})$
 $= 1 + \frac{n}{2} + (2^n * \frac{1}{2^{n+1}})$
 $= 1 + \frac{n}{2} + \frac{1}{2}$
 $= 1 + \frac{n+1}{2}$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

(2.14) Consider the following series: 1, 2, 3, 4, 5, 10, 20, 40, ..., which starts as an arithmetic series, but after the first 5 terms becomes a geometric series. Prove that any positive integer can be written as a sum of distinct numbers from this series.

Proposition: Any positive integer can be written as a sum of distinct numbers from this series.

Any positive integer can be present as :

and it is easy to prove that any r can be written as a sum of distinct numbers from the series.

ex: when
$$n = 0$$
, 1,2,3,4,5,(5+1),(5+2),(5+3),(5+4)

About n = 1:

ex: when
$$n = 1, 10+1, 10+2, ..., 10+(5+4)$$

The thing we have to prove is that : any 10n can be written as a sum of distinct numbers from infinity series $S = \{10, 20, 40...\}$

The proof is by induction on n.(十位數)

```
[Base case] n = 0, 1: can be proved intuitively (1-19)
```

[Strongly Inductive Hypothesis] for all x, $1 \le x \le n, x \in N$ can be written as a sum of distinct numbers S_x , which is a subset of S.

```
[Induction Step] 10(n + 1) in two cases.
[n+1 \text{ is odd}]
let x = \frac{n}{2}, 1 \le x \le n, x \in N
10x can be written as a sum of distinct numbers:
S_x = \{x_1, x_2, ..., x_i\} with each element in S.(inductive hypothesis)
10n can be written as a sum of distinct numbers:
S_n = \{2x_1, 2x_2, ..., 2x_i\}. Each element is still in S and S_n
does not contain \{10\}
10(n+1) can be written as a sum of distinct numbers :
S_{n+1} = \{10, 2x_1, 2x_2, ..., 2x_i\}
```

[n + 1 is even]
let
$$x = \frac{n+1}{2}$$
, $1 \le x \le n, x \in N$

10x can be written as a sum of distinct numbers :

$$S_x = \{x_1, x_2, ..., x_i\}$$
 with each element in S.(inductive hypothesis)

$$10(n+1) = 2x$$
 can be written as a sum of distinct numbers :

$$S_{n+1} = \{2x_1, 2x_2, ..., 2x_i\}$$
 and each element is still in S.

10(n+1) can be written as a sum of distinct numbers from S.

By M.I., we proved the proposition.

(2.37) Consider the recurrence relation for Fibonacci numbers F(n) = F(n-1) + F(n-2). Without solving this recurrence, compare F(n) to G(n) defined by the recurrence G(n) = G(n-1) + G(n-2) + 1. It seems obvious that G(n) > F(n) (because of the extra 1). Yet the following is a seemingly valid proof (by induction) that G(n) = F(n) - 1. We assume, by induction, that G(k) = F(k) - 1 for all k such that $1 \le k \le n$, and we consider G(n+1):

$$G(n+1) = G(n) + G(n-1) + 1 = F(n) - 1 + F(n-1) - 1 + 1 = F(n+1) - 1$$

What is wrong with this proof?

We can find that :

$$\begin{aligned} &\mathsf{F}(1)=1 \text{ and } \mathsf{G}(1)=1+1=2 \\ &\mathsf{G}(1)\neq \mathsf{F}(1)\text{ - } 1 \end{aligned}$$

But this question does not define G(1) and G(2)!

So if we define

 $\mathsf{G}(1)=0,\ \mathsf{G}(2)=0$ so that $\mathsf{G}(3)=1,\ \mathsf{G}(4)=2$ and so on, we will find the assumption in this question

$$\mathsf{G}(1) \neq \mathsf{F}(1)$$
 - 1

is exactly true!

The set of all binary trees that store non-negative integer key values may be defined inductively as follows.

- (a) The empty tree, denoted \perp , is a binary tree.
- (b) If t_l and t_r are binary trees, then $node(k, t_l, t_r)$, where $k \in \mathbb{Z}$ and $k \geq 0$, is also a binary tree.

So, for instance, $node(2, \bot, \bot)$ is a single-node binary tree storing key value 2 and $node(2, node(1, \bot, \bot), \bot)$ is a binary tree with two nodes — the root and its left child, storing key values 2 and 1 repsectively. Pictorially, they may be depicted as below.

- (a) (5 points) Define inductively a function SUM that computes the sum of all key values of a binary tree. Let $SUM(\bot) = 0$, though the empty tree does not store any key value.
- (b) (5 points) Suppose, to differentiate the empty tree from a non-empty tree whose key values sum up to 0, we require that $SUM(\bot) = -1$. Give another definition for SUM that meets this requirement; again, induction should be used somewhere in the definition.
- (c) (5 points) Define inductively a function MBSUM that determines the largest among the sums of the key values along a full branch from the root to a leaf. Let $MBSUM(\bot) = 0$, though the empty tree does not store any key value.
- (d) (5 points) Suppose, to differentiate the empty tree from a non-empty tree whose key values on every branch sum up to 0, we require that $MBSUM(\bot) = -1$. Give another definition for MBSUM that meets this requirement; again, induction should be used somewhere in the definition.

Inductively define a function SUM

ightarrow Define a <u>recursive</u> function Base case of recursion: $SUM(\bot) = 0$ If tree is in the form $node(I, t_l, t_r)$, $SUM(node(k, t_l, t_r)) = k + SUM(t_l) + SUM(t_r)$

$$\textit{SUM}(\textit{tree}) = egin{cases} 0, & \textit{tree} = \bot \\ \textit{k} + \textit{SUM}(\textit{t}_\textit{l}) + \textit{SUM}(\textit{t}_\textit{r}), & \textit{tree} = \textit{node}(\textit{k}, \textit{t}_\textit{l}, \textit{t}_\textit{r}) \end{cases}$$

Can I Write Pseudocode?

教授說不行,除非題目特別指定要寫 pseudocode 作業一第五題寫 code 或 pseudocode 我不會扣分作業二第一題就會扣了,因為教授上課應該有提醒過

● Base case: $SUM(\bot) = -1$ 除此之外,其他樹的運算結果需要和 (a) 一樣 問題是,每棵樹都有很多空的子樹,不能讓這些 -1 影響結果

換句話說‧對其他非空的樹而言‧它們的 Base case 不應該 是上面這條‧而是 $SUM(node(k, \bot, \bot)) = k$

$$SUM(tree) = \begin{cases} -1, tree = \bot \\ k, tree = node(k, \bot, \bot) \\ k + SUM(t_l), tree = node(k, t_l, \bot) \text{ and } t_l \neq \bot \\ k + SUM(t_r), tree = node(k, \bot, t_r) \text{ and } t_r \neq \bot \\ k + SUM(t_l) + SUM(t_r), \text{ otherwise} \end{cases}$$

◆ロト ◆個ト ◆差ト ◆差ト を めんぐ

● 這樣寫,更簡潔!

$$SUM(tree) = egin{cases} -1, & tree = \bot \\ SUM'(tree), & otherwise \end{cases}$$

$$SUM'(tree) = egin{cases} 0, & tree = \bot \\ k + SUM'(t_l) + SUM'(t_r), & tree = node(k, t_l, t_r) \end{cases}$$

Define a function MBSUM 從樹根到葉子形成的路徑,總和最大者 Base case: $MBSUM(\bot) = 0$ If tree is in the form $node(k, t_l, t_r)$, $MBSUM(node(k, t_l, t_r)) = k + \max(MBSUM(t_l), MBSUM(t_r))$

● Base case: $MBSUM(\bot) = -1$ 除此之外,其他樹的運算結果需要和 (c) 一樣

$$\textit{MBSUM}(\textit{tree}) = \begin{cases} -1, \textit{tree} = \bot \\ \textit{k}, \textit{tree} = \textit{node}(\textit{k}, \bot, \bot) \\ \textit{k} + \textit{MBSUM}(\textit{t}_{\textit{l}}), \textit{tree} = \textit{node}(\textit{k}, \textit{t}_{\textit{l}}, \bot) \textit{ and } \textit{t}_{\textit{l}} \neq \bot \\ \textit{k} + \textit{MBSUM}(\textit{t}_{\textit{r}}), \textit{tree} = \textit{node}(\textit{k}, \bot, \textit{t}_{\textit{r}}) \textit{ and } \textit{t}_{\textit{r}} \neq \bot \\ \textit{k} + \max(\textit{MBSUM}(\textit{t}_{\textit{l}}) + \textit{MBSUM}(\textit{t}_{\textit{r}})), \textit{otherwise} \end{cases}$$