
Algorithms [Compiled on November 23, 2020] Fall 2020

Suggested Solutions to Midterm Problems

1. The set of all full binary trees that store non-negative integer key values may be defined
inductively as follows.

(a) FBT (k,⊥,⊥, 0), for any non-negative integer k, is a full binary tree of height 0.

(b) If tl and tr are full binary trees of height h, then FBT (k, tl, tr, h + 1), for any non-
negative integer k, is a full binary tree of height h + 1.

Please give a similar inductive definition for the set of all complete binary trees (of the form
CBT (·, ·, ·, ·)) that store non-negative integer key values. For instance, CBT (6,⊥,⊥, 0) is
a single-node complete binary tree storing key value 6 and CBT (8,CBT (6,⊥,⊥, 0),⊥, 1)
is a complete binary tree with two nodes — the root and its left child, storing key values
8 and 6 repsectively. Pictorially, they may be depicted as below.

6

⊥⊥

8

⊥6

⊥⊥

Solution. The set of all (non-empty) complete binary trees may be defined as follows:

(a) CBT (k,⊥,⊥, 0), for any non-negative integer k, is a complete binary tree of height
0, and CBT (k1,CBT (k2,⊥,⊥, 0),⊥, 1), for any non-negative integers k1 and k2, is a
(proper) complete binary tree of height 1.

(b) Suppose tl and tr are complete binary trees.

i. If tl is a full binary tree of height h and tr is a complete binary tree of height h,
then CBT (k, tl, tr, h + 1), for any non-negative integer k, is a complete binary
tree of height h + 1.

ii. If tl is a complete tree of height h and tr is a full binary tree of height h − 1,
then CBT (k, tl, tr, h + 1), for any non-negative integer k, is a complete binary
tree of height h + 1.

Here by saying “a complete binary tree t is a full binary tree,” we mean that, when every
occurrence of CBT in t = CBT (·, ·, ·, ·) is replaced by FBT , it is indeed a full binary tree
according to the definition of FBT (·, ·, ·, ·). (Mathematically, a CBT is a full binary tree
if it is isomorphic to some FBT.)

Note: as the definition is intended to exclude the empty tree as a complete binary tree,
it includes as a base case the (proper) complete binary tree (with two nodes) of height 1,
to avoid the need, in the inductive step, of treating the special case of a complete binary
tree without a right child. 2

2. Prove by induction that the sum of the heights of all nodes in a complete binary tree with
n nodes is at most n− 1. You may assume it is known that the sum of the heights of all

1

nodes in a full binary tree of height h is 2h+1−h−2. (Note: a single-node tree has height
0.)

Solution. From the solution to the preceding problem, we see that a complete binary tree
is:

(a) a single-node tree of height 0,

(b) a two-node tree of height 1 where the root has a left child,

(c) composed from a full binary tree of height h with nl nodes and a complete (possibly
full) binary tree of height h with nr nodes as the left and the right subtrees of the
root, resulting in a tree of height h + 1 with nl + nr + 1 nodes, or

(d) composed from a complete (possibly full) binary tree of height h with nl nodes and
a full binary tree of height h− 1 with nr nodes as the left and the right subtrees of
the root, resulting also in a tree of height h + 1 with nl + nr + 1 nodes.

Let G(n) denote the sum of the heights of all nodes in a complete binary tree with n
nodes. For a full binary tree (as a special case of complete binary trees) with n = 2h+1−1
nodes where h is the height of the tree, we already know that G(n) = 2h+1 − (h + 2) =
n− (h+ 1) ≤ n− 1. With this as a basis, we prove that G(n) ≤ n− 1 for the general case
of arbitrary complete binary trees by induction on the number n (≥ 1) of nodes.

Base case (n = 1 or n = 2): When n = 1, the tree contains a single node whose height
is 0. So, G(n) = 0 ≤ 1 − 1 = n − 1. When n = 2, the tree has one additional node as
the left child of the root. The height of the root is 1, while that of its left child is 0. So,
G(n) = 1 ≤ 2− 1 = n− 1.

Inductive step (n > 2): If n happens to be equal to 2h+1 − 1 for some h ≥ 1, i.e., the tree
is full, then we are done; note that this in particular covers the case of n = 3 = 21+1 − 1.
Otherwise, suppose 2h+1 − 1 < n < 2h+2 − 1 (h ≥ 1), i.e., the tree is a “proper” complete
binary tree with height h + 1 ≥ 2. There are two cases to consider:

Case 1: The left subtree is full of height h with nl nodes and the right one is complete also
of height h with nr nodes (such that nl +nr + 1 = n). From the special case of full binary
trees and the induction hypothesis, G(nl) = 2h+1−(h+2) = nl−(h+1) and G(nr) ≤ nr−1.
G(n) = G(nl)+G(nr)+(h+1) ≤ (nl−(h+1))+(nr−1)+(h+1) = (nl+nr+1)−2 ≤ n−1.

Case 2: The left subtree is complete of height h with nl nodes and the right one is
full of height h − 1 with nr nodes. From the induction hypothesis and the special case
of full binary trees, G(nl) ≤ nl − 1 and G(nr) = 2h − (h + 1) = nr − h. G(n) =
G(nl) + G(nr) + (h + 1) ≤ (nl − 1) + (nr − h) + (h + 1) = (nl + nr + 1)− 1 = n− 1. 2

3. The Knapsack Problem that we discussed in class is defined as follows: Given a set S of n
items, where the ith item has an integer size S[i], and an integer K, find a subset of the
items whose sizes sum to exactly K or determine that no such subset exists.

We have described in class an algorithm (see the Appendix) to solve the problem. Please
provide, for each of the following two requirements, a modification to the algorithm that
meets the requirement. (For each case, you may just indicate the changes that should be
made to the original algorithm.)

(a) The values of P [i, k].belong (0 ≤ i ≤ n and 0 ≤ k ≤ K) record the subset (if one
exists) with the fewest items whose sizes sum to K.

Solution. To obtain the subset (if one exists) with the fewest items, we should try
the larger items before the smaller ones. For instance, suppose S contains four items

2

with sizes S[1] = 1, S[2] = 2, S[3] = 3, and S[4] = 4 and K is 6. If we try the items
in the given order, we will get the combination of S[1], S[2], and S[3]. On the other
hand, if we try the larger items earlier, then we will get the combination of S[4] and
S[2], one item fewer than the previous combination. So, to meet the requirement, we
simply sort the items in decreasing order of their sizes, before starting the original
procedure. 2

(b) The type of P [i, k].exist becomes integer and it gives the number of possible sub-
sets of items from S[1..i] whose sizes sum to exactly k. In this case, the values of
P [i, k].belong are not useful and can be omitted.

Solution. The basic idea is for P [i, k].exist to inherit the value of P [i − 1, k].exist
which records the number of subsets from 1-st to (i − 1)-th items and hence is
also the number of subsets from 1-st to i-th items but excluding i-th item that
meet the requirement of having item sizes summing to k. To this, we then add
P [i − 1, k − S[i]].exist, if k − S[i] ≥ 0, which is the number of subsets from 1-st to
(i− 1)-th items, each of which contains items whose sizes sum to k− S[i] and hence
is also the number of subsets from 1-st to i-th items always including i-th item, each
of which contains items whose sizes sum to k.

Algorithm Knapsack (S,K);
begin

P [0, 0].exist := 1;
for k := 1 to K do

P [0, k].exist := 0;
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := P [i− 1, k].exist;
if k − S[i] ≥ 0 then

P [i, k].exist := P [i, k].exist + P [i− 1, k − S[i]].exist;
end

2

4. You are asked to design a schedule for a round-robin tennis tournament. There are n = 2k

(k ≥ 1) players. Each player must play every other player, and each player must paly
one match per round for n− 1 rounds. Denote the players by P1, P2, . . . , Pn. Output the
schedule for each player. (Hint: use divide and conquer in the following way. First, divide
the players into two equal groups and let them play within the groups for the first n

2 − 1
rounds. Then, design the games between the groups for the other n

2 rounds.)

Solution.

Algorithm Tournament(n);
// The number of players n = 2k for some k ≥ 1.
// O[r, i] = j indicates that in Round r (1 ≤ r ≤ n− 1) the opponent of Pi is Pj .
begin

Schedule(1, n, 1);
end

procedure Schedule(L,R, r);
begin

3

if R− L = 1 then
O[r, L], O[r,R] := R,L;

else

M := bL+R
2 c;

Schedule(L,M, r); // M − L + 1 = R− (M + 1) + 1 (half of the players).
Schedule(M + 1, R, r);
// Rounds r to (r + (M − L)− 1) have been scheduled by the recursive calls.
// Next schedule Rounds (r + (M − L)) to (r + (M − L) + (M − L))
// between players L to M and players (M + 1) to R.
for k from (M − L) to ((M − L) + (M − L)) do

for i from L to M do
O[r + k, i] := (M + 1) + (((i− L) + (k − (M − L))) mod (M − L + 1));
O[r + k, (M + 1) + (((i− L) + (k − (M − L))) mod (M − L + 1))] := i;
// Alternatively,
// O[r + k, i] := (M + 1) + ((i + k) mod (M − L + 1));
// O[r + k, (M + 1) + ((i + k) mod (M − L + 1))] := i;

end

2

5. Consider the solutions to the union-find problem discussed in class. Suppose we start
with a collection of ten elements: A, B, C, D, E, F , G, H, I, and J , and the following
sequence of operations are performed: union(A,B), union(C,D), union(E,F), union(G,H),
union(I,J), union(A,D), union(F,G), union(D,J), union(J,H).

Assuming that both the balancing and the path compression techniques are used, draw
(1) a diagram showing the grouping of these ten elements immediately after union(F,G)
is performed and (2) another after the whole sequence of operations are performed. In
the case of combining two groups of the same size, please always point the second group
to the first.

Solution.

Immediately after union(F,G):

A nil

B C

D

E nil

F G

H

I nil

J

After the whole sequence of operations are performed:

4

A nil

B C

D

I

J

E

F G

H

2

6. Consider rearranging the following array into a max heap using the bottom-up approach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 2 7 5 1 13 8 6 4 11 10 14 15 12 9

Please show the result (i.e., the contents of the array) after a new element is added to the
current collection of heaps (at the bottom) until the entire array has become a heap.

Solution.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 2 7 5 1 13 8 6 4 11 10 14 15 12 9

3 2 7 5 1 13 12 6 4 11 10 14 15 8 9

3 2 7 5 1 15 12 6 4 11 10 14 13 8 9

3 2 7 5 11 15 12 6 4 1 10 14 13 8 9

3 2 7 6 11 15 12 5 4 1 10 14 13 8 9

3 2 15 6 11 14 12 5 4 1 10 7 13 8 9

3 11 15 6 10 14 12 5 4 1 2 7 13 8 9

15 11 14 6 10 13 12 5 4 1 2 7 3 8 9

2

7. Draw a decision tree of the Mergesort algorithm for the case of A[1..3], i.e., n = 3. In
the decision tree, you must indicate (1) which two elements of the original input array
are compared in each internal node and (2) the sorting result in each leaf. Please use X1,
X2, X3 (not A[1], A[2], A[3]) to refer to the elements (in this order) of the original input
array A.

Solution.

X2 : X3

X1 : X3

X1 : X2

X3X2X1X3X1X2

X1X3X2

X1 : X2

X1 : X3

X2X3X1X2X1X3

X1X2X3

≤ >

2

5

8. Construct a Huffman code tree for a text composed from seven characters A, B, C, D, E,
F, and G with frquencies 18, 10, 3, 8, 24, 4, and 10 respectively. And then, list the codes
for all the characters according to the code tree.

Solution.

77

33

15

7

3

C

4

F

8

D

18

A

44

20

10

B

10

G

24

E

Character Frequency Code

A 18 01
B 10 100
C 3 0000
D 8 001
E 24 11
F 4 0001
G 10 101

2

9. The next table is a precomputed table (for B = b1b2 · · · bm) that plays a critical role in
the KMP algorithm. Under what condition (regarding b1b2 · · · bi) does next [i] (for i > 0)
get a 0? And under what condition can it be safely set to −1 (without missing a potential
match)?

Solution. The value of next [i] is determined by the length of the longest prefix of
b1b2 · · · bi−1 that is also a suffix of b1b2 · · · bi−1. When no such prefix exists, next [i] gets a
0.

During a search for string B in string A using KMP, when bj is compared against ai
and the comparison fails, bnext [j]+1 is tried next against ai. When next [j] = 0, it is b1
that is compared with ai. If the comparison fails, then b1 will be compared against ai+1,
according to the case for next [j]+1 = 0, i.e., next [j] = −1. When b1 = bj , the comparison
between b1 and ai is doomed to fail (since b1 = bj 6= ai) and the comparison could have
been saved. To achieve the saving, we can set next [j] to −1 (instead of 0) when bj happens
to be equal to b1. 2

6

10. The Fibonacci word sequence of bit strings is defined as follows:

F (n) =

0 if n = 0
1 if n = 1
F (n− 1) · F (n− 2) if n ≥ 2

Here · denotes the operation of string concatenation. The first six Fibonacci words (from
F (0) to F (5)) are: 0, 1, 10, 101, 10110, 10110101.

Design an algorithm that, given a bit pattern p and a number n, determines whether p
occurs in F (n). For instance, 1101 occurs in F (5), but not F (4). Please present your
algorithm in adequate pseudocode. Explain why it is correct and give an analysis of its
time complexity. The more efficient your algorithm is, the more points you will be credited
for this problem.

Solution. When the given bit pattern p is of length 1, i.e., p equals “0” or “1”, it can be
trivially determined whether p occurs in F (n) for the given n. So, let us consider |p| ≥ 2
and assume that m is the smallest number such that |p| ≤ |F (m)|.
We claim that, if p does not occur in F (m), F (m + 1), F (m + 2), or F (m + 3), then
it will never occur in any Fibonacci word later in the sequence. With this claim (to
be proven later), an algorithm that, given a bit pattern p and a number n, determines
whether p occurs in F (n) may proceed as function Find defined below. If p occurs in
F (n), Find(p, n) returns the smallest m (0 ≤ m ≤ n) such that p occurs in F (m) already;
otherwise, it returns −1. Function Find assumes the availability of the KMP algorithm
and the preprocessing routine to compute the next table.

function Find(p, n) : integer;
begin

if p = “0” and n ≥ 0 then Find := 0
else if p = “1” and n ≥ 1 then Find := 1
else if p is non-empty and n ≥ 2 then

p len := the length of p;
m := 2;
Fm, Fm1 , Fm2 := “10”, “1”, “0”;
lm, lm1 , lm2 := 2, 1, 1;
while lm < p len do

m := m + 1;
Fm, Fm1 , Fm2 := Fm1 · Fm2 , Fm, Fm1 ;
lm, lm1 , lm2 := lm1 + lm2 , lm, lm1 ;

compute the next table for p (to use KMP);
found , i := false, 0;
while not found and i < 4 do

if p is a substring of Fm (checked by KMP) then
found := true

else
i := i + 1;
Fm, Fm1 , Fm2 := Fm1 · Fm2 , Fm, Fm1 ;

if found then Find := m + i
else Find := −1

else Find := −1
end

7

The length of F (m) is at most 2×|p|, while the length of F (m+ 3) is at most 8×|F (m)|.
So, |F (m)|, |F (m + 1)|, |F (m + 2)|, and |F (m + 3)| are all O(|p|). Checking whether p is
a substring of F (m+ i), for 0 ≤ i ≤ 3, using the KMP algorithm in the second while loop
takes 4×O(|p|), i.e., O(|p|). The first while loop takes O(|p|) time, mainly to compute the
final F (m). The computation of next also takes O(|p|) time. So, the total time complexity
is O(|p|).
Proof of the claim:

F (m + 2) = F (m + 1) · F (m)
F (m + 3) = F (m + 2) · F (m + 1)

= [F (m + 1) · F (m)] · [F (m) · F (m− 1)]

Given that p (with |p| ≤ |F (m)|) is not a substring of F (m), F (m + 1), F (m + 2), or
F (m + 3), it is also not a substring of F (m + 1) · F (m) or F (m) · F (m).

F (m + 4) = F (m + 3) · F (m + 2)
= [F (m + 2) · F (m + 1)] · [F (m + 1) · F (m)]
= [F (m + 2) · F (m + 1)] · [F (m) · F (m− 1) · F (m)]

Since p is not a substring of F (m + 3) or F (m + 2), for p to occur in F (m + 4), it must
straddle on the boundary between F (m + 3) and F (m + 2) and be a substring of F (m +
1) ·F (m), which contradicts the known fact that p is not a substring of F (m+ 1) ·F (m).

F (m + 5) = F (m + 4) · F (m + 3)
= [F (m + 3) · F (m + 2)] · [F (m + 2) · F (m + 1)]
= [F (m + 3) · F (m + 1) · F (m)] · [F (m + 1) · F (m) · F (m + 1)]
= [F (m + 3) · F (m + 1) · F (m)] · [F (m) · F (m− 1) · F (m) · F (m + 1)]

Since p is not a substring of F (m + 4) or F (m + 3), for p to occur in F (m + 5), it
must straddle on the boundary between F (m + 4) and F (m + 3) and be a substring of
F (m) · F (m), which contradicts the known fact that p is not a substring of F (m) · F (m).

All subsequent cases may be reasoned similarly; the whole proof could be presented more
formally as a proof by induction on i (≥ 0) as an increment in F (m + i).

2

Appendix

• An algorithm for determining whether a solution to the (original) Knapsack Problem
exists:

Algorithm Knapsack (S,K);
begin

P [0, 0].exist := true;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := false

8

else if k − S[i] ≥ 0 then
if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := true

end

• The Mergesort algorithm:

Algorithm Mergesort (X,n);
begin M Sort(1, n) end

procedure M Sort (Left,Right);
begin

if Right− Left = 1 then
if X[Left] > X[Right] then swap(X[Left], X[Right])

else if Left 6= Right then
Middle := d 1

2
(Left+Right)e;

M Sort(Left,Middle− 1);
M Sort(Middle,Right);
// the merge part
i := Left; j := Middle; k := 0;
while (i ≤Middle− 1) and (j ≤ Right) do

k := k + 1;
if X[i] ≤ X[j] then

TEMP [k] := X[i]; i := i+ 1
else TEMP [k] := X[j]; j := j + 1;

if j > Right then
for t := 0 to Middle− 1− i do

X[Right− t] := X[Middle− 1− t]
for t := 0 to k − 1 do

X[Left+ t] := TEMP [1 + t]
end

• The KMP algorithm (assuming next):

Algorithm String Match (A,n,B,m);
begin

j := 1; i := 1;
Start := 0;
while Start = 0 and i ≤ n do

if B[j] = A[i] then
j := j + 1; i := i+ 1

else
j := next[j] + 1;
if j = 0 then

j := 1; i := i+ 1;
if j = m+ 1 then Start := i−m

end

• The algorithm for computing the next table in the KMP algorithm:

Algorithm Compute Next (B,m);
begin

next[1] := −1; next[2] := 0;
for i := 3 to m do

j := next[i− 1] + 1;
while B[i− 1] 6= B[j] and j > 0 do

j := next[j] + 1;
next[i] := j

end

9

