

Reduction (Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

Reduction

Algorithms 2020 1 / 13

3

(日) (同) (日) (日) (日)

Introduction

- The basic idea of *reduction* is to solve a problem with the solution to another "similar" problem.
- When Problem A can be reduced (efficiently) to Problem B, there are two consequences:
 - A solution to Problem B may be used to solve Problem A.
 If A is known to be "hard", then B is also necessarily "hard".
- One should avoid the pitfall of reducing a problem to another that is too general or too hard.

(日) (同) (三) (三)

Matching

- Given an undirected graph G = (V, E), a matching is a set of edges that do not share a common vertex.
- A maximum matching is one with the maximum number of edges.
- A maximal matching is one that cannot be extended by adding any other edge.

E SQA

(日) (周) (三) (三)

Bipartite Matching

- A bipartite graph G = (V, E, U) is a graph with $V \cup U$ as the set of vertices and E as the set of edges such that
 - 🌻 V and U are disjoint and
 - $\overset{\circ}{=}$ The edges in E connect vertices from V to vertices in U.

Problem

Given a bipartite graph G = (V, E, U), find a maximum matching in G.

(日) (周) (三) (三)

Bipartite Matching (cont.)

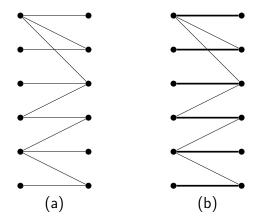


Figure: A bipartite graph and a maximum matching. Source: adapted from [Manber 1989, Figure 7.37].

Yih-Kuen Tsay (IM.NTU)

Reduction

Algorithms 2020 5 / 13

A D > A B > A B > A

Bipartite Matching (cont.)

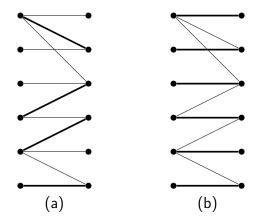


Figure: A maximal matching and a maximum matching. Source: adapted from [Manber 1989, Figure 7.37].

Yih-Kuen Tsay (IM.NTU)

Reduction

Algorithms 2020 6 / 13

A D > A B > A B > A

Networks

- Solution Consider a directed graph, or network, G = (V, E) with two distinguished vertices: s (the source) with indegree 0 and t (the sink) with outdegree 0.
- Each edge e in E has an associated positive weight c(e), called the capacity of e.

(日) (周) (三) (三)

• A **flow** is a function *f* on *E* that satisfies the following two conditions:

1.
$$0 \le f(e) \le c(e)$$
.
2. $\sum_{u} f(u, v) = \sum_{w} f(v, w)$, for all $v \in V - \{s, t\}$.

The network flow problem is to maximize the flow f for a given network G.

(日) (同) (三) (三)

Bipartite Matching to Network Flow

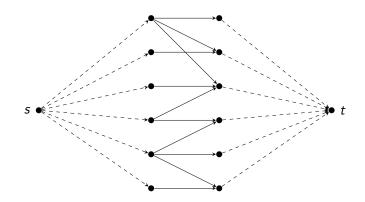


Figure: Reducing bipartite matching to network flow. Every edge has capacity 1.

Source: redrawn from [Manber 1989, Figure 7.39].

Yih-Kuen Tsay (IM.NTU)

Algorithms 2020 9 / 13

Bipartite Matching to Network Flow (cont.)

Mapping from the input G = (V, E, U) of the bipartite matching problem to the input G' = (V', E') and c of the network flow problem:

$$𝔅 V' = {s} ∪ V ∪ U ∪ {t} 𝔅 E' = {(s, v) | v ∈ V} ∪ E ∪ {(u, t) | u ∈ U}$$

otin The capacity for every $e\in E'$ is 1, i.e., $orall e\in E', c(e)=1.$

- Correspondence between the two solutions
 - Solution A maximum flow f in G' defines a maximum matching M_f in G.
 - A maximum matching M in G induces a maximum flow f_M in G'.

(日) (周) (三) (三) (三) (000

Notations

- Let \overline{v} denote a vector (v_1, v_2, \dots, v_n) of *n* constants or *n* variables.
- So In the following, \overline{a} , \overline{b} , \overline{c} , and \overline{e} are vectors of *n* constants.
- And, \overline{x} and \overline{y} are vectors of *n* variables.
- The (inner or dot) product a · x of two vectors a and x is defined as follows:

$$\overline{a} \cdot \overline{x} = \sum_{i=1}^{n} a_i \cdot x_i$$

Algorithms 2020 11 / 13

(日) (同) (三) (三)

Linear Programming

😚 Objective function:

 $\overline{c} \cdot \overline{x}$

Sequality constraints:

$$\overline{e}_1 \cdot \overline{x} = d_1 \overline{e}_2 \cdot \overline{x} = d_2 \vdots \overline{e}_m \cdot \overline{x} = d_m$$

- Inequality constraints may be turned into equality constraints by introducing *slack* variables.
- Non-negative constraints: x_j ≥ 0, for all j in P, where P is a subset of {1, 2, ..., n}.
- The goal is to maximize (or minimize) the value of the objective function, subject to the equality constraints.

Yih-Kuen Tsay (IM.NTU)

Reduction

Network Flow to Linear Programming

- From the input G = (V, E) and c of the network flow problem to the objective function and constraints of linear programming:
 - Let x_1, x_2, \ldots, x_n represent the flow values of the *n* edges.
 - Objective function:

$$\sum_{i\in S} x_i$$

where S is the set of edges leaving the source.

Inequality constraints:

 $x_i \leq c_i$, for all $i, 1 \leq i \leq n$

where c_i is the capacity of edge i.

Equality constraints:

$$\sum_{i \text{ leaves } v} x_i - \sum_{j \text{ enters } v} x_j = 0, \text{ for every } v \in V \setminus \{s, t\}$$

Non-negative constraints: $x_i \ge 0$, for all $i, 1 \le i \le n$.

Yih-Kuen Tsay (IM.NTU)

Algorithms 2020 13 / 13