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1 Induction Principles

The Standard Induction Principle

• Let T be a theorem that includes a parameter n whose value can be any natural number.

• Here, natural numbers are positive integers, i.e., 1, 2, 3, . . ., excluding 0 (sometimes we may include
0).

• To prove T , it suffices to prove the following two conditions:

– T holds for n = 1. (Base case)

– For every n > 1, if T holds for n− 1, then T holds for n. (Inductive step)

• The assumption in the inductive step that T holds for n− 1 is called the induction hypothesis.

A Simple Proof by Induction

Theorem 1 (2.1). For all natural numbers x and n, xn − 1 is divisible by x− 1.

Proof. (Suggestion: try to follow the structure of this proof when you present a proof by induction.)
The proof is by induction on n.
Base case (n = 1): x− 1 is trivially divisible by x− 1.
Inductive step (n > 1): xn − 1 = x(xn−1 − 1) + (x− 1). xn−1 − 1 is divisible by x− 1 from the induction

hypothesis and x− 1 is divisible by x− 1. Hence, xn − 1 is divisible by x− 1.

Note: a is divisible by b if there exists an integer c such that a = b× c.

Variants of Induction Principle

Theorem 2. If a statement T , with a parameter n, is true for n = 1, and if, for every n ≥ 1, the truth of
T for n implies its truth for n + 1, then T is true for all natural numbers.

Theorem 3 (Strong Induction). If a statement T , with a parameter n, is true for n = 1, and if, for every
n > 1, the truth of T for all natural numbers < n implies its truth for n, then T is true for all natural
numbers.

Theorem 4. If a statement T , with a parameter n, is true for n = 1 and for n = 2, and if, for every n > 2,
the truth of T for n− 2 implies its truth for n, then T is true for all natural numbers.
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2 Design by Induction

Design by Induction: First Glimpse

• The selection sort, for instance, can be seen as constructed using design by induction:

1. When there is only one element, we are done.

2. When there are n (> 1) elements, we

(a) select the largest element,

(b) place it behind the remaining n− 1 elements, and

(c) sort the remaining n− 1 elements.

• This looks simple enough, but the selection sort isn’t very efficient.

• How can we obtain a more efficient algorithm via design by induction?

• To see the power of design by induction, let’s look at a less familiar example.

Design by Induction: First Glimpse (cont.)

Problem 5. Given two sorted arrays A[1..m] and B[1..n] of positive integers, find their smallest common
element; returns 0 if no common element is found.

• Assume the elements of each array are in ascending order.

• Obvious solution: take one element at a time from A and find out if it is also in B (or the other way
around).

• How efficient is this solution?

/* O(m log n) (using binary search on B); or, O(n logm) the other way. */

• Can we do better?

Design by Induction: First Glimpse (cont.)

• There are m + n elements to begin with.

• Can we pick out one element such that either (1) it is the element we look for or (2) it can be ruled
out from subsequent searches?

• In the second case, we are left with the same problem but with m + n− 1 elements?

• Idea: compare the current first elements of A and B.

1. If they are equal, then we are done.

2. If not, the smaller one cannot be the smallest common element.
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Design by Induction: First Glimpse (cont.)
Below is the complete solution:

Algorithm SCE(A,m,B, n) : integer;
begin

if m = 0 or n = 0 then SCE := 0;
if A[1] = B[1] then

SCE := A[1];
else if A[1] < B[1] then

SCE := SCE(A[2..m],m− 1, B, n);
else SCE := SCE(A,m,B[2..n], n− 1);

end

/* Time complexity: O(m + n). */

Why Induction Works

• Computations carried out by a computer/machine can, in essence, be understood as mathematical
functions.

• To solve practical problems with computers,

– objects/things in a practical domain must be modeled as (mostly discrete) mathematical struc-
tures/sets, and

– various manipulations of the objects become functions on the corresponding mathematical struc-
tures.

• Many mathematical structures are naturally defined by induction.

• Functions on inductive structures are also naturally defined by induction (recursion).

Recursively/Inductively-Defined Sets

• The set N of natural numbers, including 0:

1. Base case: 0 is a natural number (0 ∈ N).

2. Inductive step: if n is a natural number (n ∈ N), then n+1 is also a natural number ((n+1) ∈ N).

• The set N1 of natural numbers, excluding 0:

1. Base case: 1 is a natural number.

2. Inductive step: if n is a natural number, then n + 1 is also a natural number.

Note: When n = n′ + 1 for some n′ ∈ N, we write n′ as n − 1; similarly, for n′ ∈ N1. The factorial
function fac : N→ N1, for example, can be defined inductively as follows:

fac(n) =

{
1 if n = 0
n× fac(n− 1) otherwise
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Recursively/Inductively-Defined Sets (cont.)

• Binary trees:

1. Base case: the empty tree is a binary tree.

2. Inductive step: if L and R are binary trees, then a node with L and R as the left and the right
children is also a binary tree.

• Nonempty binary trees:

1. Base case: a single root node (without any child) is a binary tree.

2. Inductive step: if L and R are binary trees, then a node with L as the left child and/or R as the
right child is also a binary tree.

Structural Induction

• Structural induction is a generalization of mathematical induction on the natural numbers.

• It is used to prove that some proposition P (x) holds for all x of some sort of recursively/inductively
defined structure such as binary trees.

• Proof by structural induction:

1. Base case: the proposition holds for all the minimal structures.

2. Inductive step: if the proposition holds for the immediate substructures of a certain structure S,
then it also holds for S.

3 Proofs by Induction

Another Simple Example

Theorem 6 (2.4). If n is a natural number and 1 + x > 0, then (1 + x)n ≥ 1 + nx.

• Below are the key steps:

(1 + x)n+1 = (1 + x)(1 + x)n

{induction hypothesis and 1 + x > 0}
≥ (1 + x)(1 + nx)
= 1 + (n + 1)x + nx2

≥ 1 + (n + 1)x

• The main point here is that we should be clear about how conditions listed in the theorem are used.

3.1 Proving vs. Computing

Proving vs. Computing

Theorem 7 (2.2). 1 + 2 + · · ·+ n = n(n+1)
2 .

• This can be easily proven by induction.

• Key steps: 1 + 2 + · · · + n + (n + 1) = n(n+1)
2 + (n + 1) = n2+n+2n+2

2 = n2+3n+2
2 = (n+1)(n+2)

2 =
(n+1)((n+1)+1)

2 .

• Induction seems to be useful only if we already know the sum.

• What if we are asked to compute the sum of a series?

• Let’s try 8 + 13 + 18 + 23 + · · ·+ (3 + 5n).
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Proving vs. Computing (cont.)

• Idea: guess and then verify by an inductive proof!

• The sum should be of the form an2 + bn + c.

• By checking n = 1, 2, and 3, we get 5
2n

2 + 11
2 n.

/* Solve the following system of equations:

(n = 1) 8 = a× 12 + b× 1 + c
(n = 2) 8 + 13 = a× 22 + b× 2 + c
(n = 3) 8 + 13 + 18 = a× 32 + b× 3 + c

Results: a = 5
2 , b = 11

2 , and c = 0. */

• Verify this for all n (1, 2, 3, and beyond), i.e., the following theorem, by induction.

Theorem 8 (2.3). 8 + 13 + 18 + 23 + · · ·+ (3 + 5n) = 5
2n

2 + 11
2 n.

3.2 A Summation Problem

A Summation Problem

1 = 1
3 + 5 = 8

7 + 9 + 11 = 27
13 + 15 + 17 + 19 = 64

21 + 23 + 25 + 27 + 29 = 125

Theorem 9. The sum of row n in the triangle is n3.

The base case is clearly correct. For the inductive step, examine the difference between rows i + 1 and i
...

A Summation Problem (cont.)
Suppose row i starts with an odd number j whose exact value is not important.

sum of row i
(conjectured)

j + (j + 2) + · · · + (j + 2(i− 1)) = i3

(j + 2i) + (j + 2i + 2) + · · · + (j + 2i + 2(i− 1)) + ? = (i + 1)3

2i + 2i + · · · + 2i + ? = 3i2 + 3i + 1

So, ? (the last number of row i + 1) must be 3i2 + 3i + 1− 2i× i = i2 + 3i + 1, if the conjecture is correct.

Lemma 10. The last number in row i + 1 is i2 + 3i + 1.

/* The lemma clearly holds for the base case (i = 0). For the inductive step, we can again look at the
difference between the last number of row i+1 and that of row i. It should be i2+3i+1−((i−1)2+3(i−1)+1) =
2i + 2. We already know that the difference between two corresponding numbers in row i + 1 and row i is
2i. So, 2i + 2 is indeed the difference between the last number of row i + 1 and that of row i. */
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A Simple Inequality

Theorem 11 (2.7). 1
2 + 1

4 + 1
8 + · · ·+ 1

2n < 1, for all n ≥ 1.

• There are at least two ways to select n terms from n + 1 terms.

1. ( 1
2 + 1

4 + 1
8 + · · ·+ 1

2n ) + 1
2n+1 .

2. 1
2 + ( 1

4 + 1
8 + · · ·+ 1

2n + 1
2n+1 ).

• The second one leads to a successful inductive proof:

1
2 + ( 1

4 + 1
8 + · · ·+ 1

2n + 1
2n+1 )

= 1
2 + 1

2 ( 1
2 + 1

4 + · · ·+ 1
2n−1 + 1

2n )

< 1
2 + 1

2

= 1

3.3 Euler’s Formula

Euler’s Formula

Figure: A planar map with 11 vertices, 19 edges, and 10 faces.

Source: redrawn from [Manber 1989, Figure 2.2].

Euler’s Formula (cont.)

Theorem 12 (2.8). The number of vertices (V ), edges (E), and faces (F ) in an arbitrary connected planar
graph are related by the formula V + F = E + 2.

/* The equality V + F = E + 2 is an “invariant” of connected planar graphs in the sense that, if one adds
or removes vertices and edges to a connected planar graph, the equality holds as long as the graph remains
connected and planar.*/

The proof is by induction on the number of faces.
Base case (F = 1): connected planar graphs with only one face are trees. So, we need to prove the

equality V + 1 = E + 2 or V − 1 = E for trees, namely the following lemma:

Lemma 13. A tree with V vertices has V − 1 edges.

Inductive step (F > 1): for a graph with more than one faces, there must be a cycle in the graph. Remove
one edge from the cyle . . .

/* Given a connected planar graph G (with V vertices, F > 1 faces, and E edges), remove one edge from a
cycle (which much exist, as F > 1) in the graph to obtain a new graph G′ (with V ′ vertices, F ′ faces, and
E′ edges such that V ′ = V , F ′+ 1 = F , and E′+ 1 = E). From the induction hypothesis, V ′+F ′ = E′+ 2.
We therefore have V ′+F ′+ 1 = E′+ 1 + 2, namely V +F = E + 2. So, the formula also holds for G, which
concludes the inductive step. */
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3.4 Gray Codes

Gray Codes

• A Gray code (after Frank Gray) for n objects is a binary-encoding scheme for naming the n objects
such that the n names can be arranged in a circular list where any two adjacent names, or code words,
differ by only one bit .

• Examples:

– 00, 01, 11, 10

– 000, 001, 011, 010, 110, 111, 101, 100

– 000, 001, 011, 111, 101, 100

A Gray Code in Picture

Figure: A rotary encoder using a 3-bit Gray code.

Source: Wikipedia.

Gray Codes (cont.)

Theorem 14 (2.10). There exist Gray codes of length k
2 for any positive even integer k.

1s1 0s1

0s2

1sj 0sj

0sj−1

Figure: Constructing a Gray code of size k = j + 2, where j is even, from another of a smaller size j.

Source: adapted from [Manber 1989, Figure 2.3].
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Gray Codes (cont.)

Theorem 15 (2.10+). There exist Gray codes of length log2 k for any positive integer k that is a power of
2.

1s1 0s1

1s2 0s2

1sj 0sj

0sj−11sj−1

Figure: Constructing a Gray code from two smaller ones (k = 2j).

Source: adapted from [Manber 1989, Figure 2.4].

Gray Codes (cont.)

• 00, 01, 11, 10 (for 22 objects)

• 000, 001, 011, 010 (add a 0)

• 100, 101, 111, 110 (add a 1)

• Combine the preceding two codes (read the second in reversed order): 000, 001, 011, 010, 110, 111,
101, 100 (for 23 objects)

Gray Codes (cont.)

Theorem 16 (2.11−). There exist Gray codes of length dlog2 ke for any positive even integer k.

To generalize the result and ease the proof, we allow a Gray code to be open where the last name and
the first name may differ by more than one bit.

Gray Codes (cont.)

Theorem 17 (2.11). There exist Gray codes of length dlog2 ke for any positive integer k ≥ 2. The Gray
codes for the even values of k are closed, and the Gray codes for odd values of k are open.

We in effect make the theorem stronger. A stronger theorem may be easier to prove, as we have a stronger
induction hypothesis.

Gray Codes (cont.)

• 00, 01, 11 (open Gray code for 3 objects)

• 000, 001, 011 (add a 0)

• 100, 101, 111 (add a 1)

• Combine the preceding two codes (read the second in reversed order): 000, 001, 011, 111, 101, 100
(closed Gray code for 6 objects)
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Gray Codes (cont.)

1s1 0s1

1s2 0s2

1sj 0sj

0sj−11sj−1

Figure: Constructing an open Gray code, for k = 2j + 1.

Source: adapted from [Manber 1989, Figure 2.5].

/* Base case (k = 2 or k = 3): The codes 0 and 1 of length 1 (= dlog2 2e) work for k = 2, while 00, 01, and
11 (which are open) of length 2 (= dlog2 3e) work for k = 3.

Inductive step (k > 3): we consider two cases, namely when k is even and when k is odd, separately.
Case 1: when k is even (k = 2j, for some j > 1). From the induction hypothesis, we have codes s1, s2,

· · · , sj of length dlog2 je for j objects. Prepend a 0 to the codes to get 0s1, 0s2, · · · , 0sj and a 1 to get 1s1,
1s2, · · · , 1sj . Pool together these two sequences of codes, we get 0s1, 0s2, · · · , 0sj , 1sj , · · · , 1s2, 1s1 for 2j
(= k) objects. Note that the first code 0s1 and the last code 1s1 differ by one bit. Also, the code length has
become dlog2 je+ 1, which equals d(log2 j) + 1e = dlog2 j + log2 2e = dlog2 2je = dlog2 ke.

Case 2: when k is odd (k = 2j + 1, for some j > 1). Again, from the induction hypothesis, we have codes
s1, s2, · · · , sj of length dlog2 je for j objects. Prepend a 0 to the codes to get 0s1, 0s2, · · · , 0sj and a 1 to
get 1s1, 1s2, · · · , 1sj . Pool together these two sequences of codes, we get 0s1, 0s2, · · · , 0sj , 1sj , · · · , 1s2,
1s1 for 2j objects of length dlog2 2je. We need one more code for the 2j + 1-st object. There are two cases:
when j is a power of two and when j is not.

If j is a power of two, we simply prepend 0 to the codes for 2j objects to get 00s1, 00s2, · · · , 00sj , 01sj ,
· · · , 01s2, 01s1. To the 2j + 1-st object we assign 11s1, which is unused. This results in the sequence of
codes 00s1, 00s2, · · · , 00sj , 01sj , · · · , 01s2, 01s1, 11s1, where only the last code 11s1 differs from the first
code 00s1 by two bits and the codes are open as expected. The code length has become dlog2 2je+ 1, which
equals dlog2(2j + 1)e (as j is a power of two) = dlog2 ke.

If j is not a power of two, there are code words of length dlog2 2je not appearing in 0s1, 0s2, · · · , 0sj ,
1sj , · · · , 1s2, 1s1 for 2j objects. Among these unused code words, there must be one that differs from one
of the codes for 2j objects by exactly one bit. (Why? One way to argue this is to recall the existence of
Gray codes for any integer that is a power of two. Envision the codes for the smallest power of two larger
than 2j being arranged in a circle. Mark the ones that appear in the codes for 2j objects. There must be an
unmarked code that is adjcent to some marked code. The unmarked code is what we need and it differs from
an adjacent marked code by exactly one bit.) We insert this code word into the sequence in the approriate
position to get the codes for 2j + 1 objects. The code length remains dlog2 2je = dlog2(2j + 1)e (as j is not
a power of two) = dlog2 ke. */

4 Reversed Induction

Arithmetic vs. Geometric Mean

Theorem 18 (2.13). If x1, x2, . . . , xn are all positive numbers, then (x1x2 · · ·xn)
1
n ≤ x1 + x2 + · · ·+ xn

n
.
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First use the standard induction to prove the case of powers of 2 and then use the reversed induction
principle below to prove for all natural numbers.

Theorem 19 (Reversed Induction Principle). If a statement P , with a parameter n, is true for an infinite
subset of the natural numbers, and if, for every n > 1, the truth of P for n implies its truth for n− 1, then
P is true for all natural numbers.

Arithmetic vs. Geometric Mean (cont.)

• For all powers of 2, i.e., n = 2k, k ≥ 1: by induction on k.

• Base case: (x1x2)
1
2 ≤ x1+x2

2 , squaring both sides . . ..

• Inductive step:

(x1x2 · · ·x2k+1)
1

2k+1

= [(x1x2 · · ·x2k+1)
1

2k ]
1
2

= [(x1x2 · · ·x2k)
1

2k (x2k+1x2k+2 · · ·x2k+1)
1

2k ]
1
2

≤ (x1x2···x2k
)

1
2k +(x

2k+1
x
2k+2

···x
2k+1 )

1
2k

2 , from the base case

≤
x1+x2+···+x

2k

2k
+

x
2k+1

+x
2k+2

+···+x
2k+1

2k

2 , from the Ind. Hypo.

=
x1+x2+···+x

2k+1

2k+1

Arithmetic vs. Geometric Mean (cont.)

• For all natural numbers: by reversed induction on n.

• Base case: the theorem holds for all powers of 2.

• Inductive step: observe that

x1 + x2 + · · ·+ xn−1

n− 1
=

x1 + x2 + · · ·+ xn−1 +
x1+x2+···+xn−1

n−1

n
.

Arithmetic vs. Geometric Mean (cont.)

(x1x2 · · ·xn−1(
x1+x2+···+xn−1

n−1
))

1
n ≤

x1+x2+···+xn−1+
x1+x2+···+xn−1

n−1

n

(from the Ind. Hypo.)

(x1x2 · · ·xn−1(
x1+x2+···+xn−1

n−1
))

1
n ≤ x1+x2+···+xn−1

n−1

(x1x2 · · ·xn−1(
x1+x2+···+xn−1

n−1
)) ≤ (

x1+x2+···+xn−1

n−1
)n

(x1x2 · · ·xn−1) ≤ (
x1+x2+···+xn−1

n−1
)n−1

(x1x2 · · ·xn−1)
1

n−1 ≤ (
x1+x2+···+xn−1

n−1
)
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5 Loop Invariants

Loop Invariants

• An invariant at some point of a program is an assertion that holds whenever execution of the program
reaches that point.

• Invariants are a bridge between the static text of a program and its dynamic computation.

• An invariant at the front of a while loop is called a loop invariant of the while loop.

• A loop invariant is formally established by induction.

– Base case: the assertion holds right before the loop starts.

– Inductive step: assuming the assertion holds before the i-th iteration (i ≥ 1), it holds again after
the iteration.

A Variant of Euclid’s Algorithm

Algorithm myEuclid(m,n);
begin

// assume that m > 0 and n > 0
x := m;
y := n;
while x 6= y do

if x < y then swap(x,y);
x := x− y;

od
. . .

end

where swap(x,y) exchanges the values of x and y.

A Variant of Euclid’s Algorithm (cont.)

Theorem 20 (Correctness of myEuclid). When Algorithm myEuclid terminates, x or y stores the value of
gcd(m,n) (assuming that m,n > 0 initially).

Lemma 21. Let Inv(m,n, x, y) denote the assertion:

x > 0 ∧ y > 0 ∧ gcd(x, y) = gcd(m,n).

Then, Inv(m,n, x, y) is a loop invariant of the while loop, assuming that m,n > 0 initially.

The loop invariant is sufficient to deduce that, when the while loop terminates, i.e., when x = y, either
x or y stores the value of gcd(x, y), which equals gcd(m,n).
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Proof of a Loop Invariant

• The proof is by induction on the number of times the loop body is executed.

• More specifically, we show that

1. the assertion is true when the flow of control reaches the loop for the first time and

2. given that the assertion is true and the loop condition holds, the assertion will remain true after
the next iteration (i.e., after the loop body is executed once more).

/* (1) Base case: when the flow of control reaches the loop for the first time, x = m and y = n, with m > 0
and n > 0. Therefore, x > 0, y > 0, and gcd(x, y) = gcd(m,n) and clearly the assertion Inv(m,n, x, y)
holds.

(2) Inductive step: assume that Inv(m,n, x, y) is true at the start of the next iteration and the loop
condition (x 6= y) holds. We need to show that Inv(m′, n′, x′, y′) also holds, where m′, n′, x′, and y′ denote
respectively the new values of m, n, x, and y after the next iteration of the while loop (m, n, x, and y
themselves denote the current values of these variables at the start of the next iteration).

From the loop body, we deduce the following relationship (assuming that the loop condition x 6= y holds):

((x < y) =⇒ (x′ = y − x) ∧ (y′ = x))
∧ ((x > y) =⇒ (x′ = x− y) ∧ (y′ = y))
∧ m′ = m
∧ n′ = n

There are two cases to consider: when x < y and when x > y. We prove the first case; the second case
can be proven similarly.

Suppose x < y. x′ = y − x > 0 and hence x′ > 0; also, y′ = x > 0 (from the induction hypothesis).
gcd(x′, y′) = gcd(y − x, x) = gcd(y, x) = gcd(x, y), which from the induction hypothesis equals gcd(m,n) =
gcd(m′, n′), and hence gcd(x′, y′) = gcd(m′, n′). Therefore, Inv(m′, n′, x′, y′) holds and this concludes the
proof. */
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