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The Königsberg Bridges Problem
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Figure: The Königsberg bridges problem.
Source: redrawn from [Manber 1989, Figure 7.1].

Can one start from one of the lands, cross every bridge exactly once,
and return to the origin?
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The Königsberg Bridges Problem (cont.)
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Figure: The graph corresponding to the Königsberg bridges problem.
Source: redrawn from [Manber 1989, Figure 7.2].
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Graphs

A graph consists of a set of vertices (or nodes) and a set of
edges (or links, each normally connecting two vertices).

A graph is commonly denoted as G (V ,E ), where

G is the name of the graph,
V is the set of vertices, and
E is the set of edges.
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Graphs (cont.)

Undirected vs. Directed Graph

Simple Graph vs. Multigraph

Path, Simple Path, Trail

Circuit, Cycle

Degree, In-Degree, Out-Degree

Connected Graph, Connected Components

Tree, Forest

Subgraph, Induced Subgraph

Spanning Tree, Spanning Forest

Weighted Graph
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Modeling with Graphs

Reachability

Finding program errors
Solving sliding tile puzzles

Shortest Paths

Finding the fastest route to a place
Routing messages in networks

Graph Coloring

Coloring maps
Scheduling classes
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Eulerian Graphs

Problem

Given an undirected connected graph G = (V ,E ) such that all the
vertices have even degrees, find a circuit P such that each edge of E
appears in P exactly once.

The circuit P in the problem statement is called an Eulerian circuit.

Theorem

An undirected connected graph has an Eulerian circuit if and only if
all of its vertices have even degrees.
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Depth-First Search
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Figure: A DFS for an undirected graph.
Source: redrawn from [Manber 1989, Figure 7.4].

Yih-Kuen Tsay (IM.NTU) Basic Graph Algorithms Algorithms 2020 8 / 42



Depth-First Search (cont.)

Algorithm Depth First Search(G , v);
begin

mark v ;
perform preWORK on v ;
for all edges (v ,w) do

if w is unmarked then
Depth First Search(G ,w);

perform postWORK for (v ,w)
end
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Depth-First Search (cont.)

Algorithm Refined DFS(G , v);
begin

mark v ;
perform preWORK on v ;
for all edges (v ,w) do

if w is unmarked then
Refined DFS(G ,w);

perform postWORK for (v ,w);
perform postWORK II on v

end
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Connected Components

Algorithm Connected Components(G );
begin

Component Number := 1;
while there is an unmarked vertex v do

Depth First Search(G , v)
(preWORK:

v .Component := Component Number);
Component Number := Component Number + 1

end

Time complexity: O(|E |+ |V |).
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DFS Numbers

Algorithm DFS Numbering(G , v);
begin

DFS Number := 1;
Depth First Search(G , v)
(preWORK:

v .DFS := DFS Number ;
DFS Number := DFS Number + 1)

end

Time complexity: O(|E |) (assuming the input graph is connected).

Yih-Kuen Tsay (IM.NTU) Basic Graph Algorithms Algorithms 2020 12 / 42



DFS Numbers

Algorithm DFS Numbering(G , v);
begin

DFS Number := 1;
Depth First Search(G , v)
(preWORK:

v .DFS := DFS Number ;
DFS Number := DFS Number + 1)

end

Time complexity: O(|E |) (assuming the input graph is connected).

Yih-Kuen Tsay (IM.NTU) Basic Graph Algorithms Algorithms 2020 12 / 42



The DFS Tree

Algorithm Build DFS Tree(G , v);
begin

Depth First Search(G , v)
(postWORK:

if w was unmarked then
add the edge (v ,w) to T );

end
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The DFS Tree (cont.)

Figure: A DFS tree for a directed graph.
Source: redrawn from [Manber 1989, Figure 7.9].
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The DFS Tree (cont.)

Lemma (7.2)

For an undirected graph G = (V ,E ), every edge e ∈ E either
belongs to the DFS tree T , or connects two vertices of G , one of
which is the ancestor of the other in T .

For undirected graphs, DFS avoids cross edges.

Lemma (7.3)

For a directed graph G = (V ,E ), if (v ,w) is an edge in E such that
v .DFS Number < w .DFS Number , then w is a descendant of v in
the DFS tree T .

For directed graphs, cross edges must go “from right to left”.
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Directed Cycles

Problem

Given a directed graph G = (V ,E ), determine whether it contains a
(directed) cycle.

Lemma (7.4)

G contains a directed cycle if and only if G contains a back edge
(relative to the DFS tree).
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Directed Cycles (cont.)

Algorithm Find a Cycle(G );
begin

Depth First Search(G , v) /* arbitrary v */
(preWORK:

v .on the path := true;
postWORK:

if w .on the path then
Find a Cycle := true;
halt;

if w is the last vertex on v ’s list then
v .on the path := false;)

end
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Directed Cycles (cont.)

Algorithm Refined Find a Cycle(G );
begin

Refined DFS(G , v) /* arbitrary v */
(preWORK:

v .on the path := true;
postWORK:

if w .on the path then
Refined Find a Cycle := true;
halt;

postWORK II:
v .on the path := false)

end
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Breadth-First Search

Figure: A BFS tree for a directed graph.
Source: redrawn from [Manber 1989, Figure 7.12].
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Breadth-First Search (cont.)

Algorithm Breadth First Search(G , v);
begin

mark v ;
put v in a queue;
while the queue is not empty do

remove vertex w from the queue;
perform preWORK on w ;
for all edges (w , x) with x unmarked do

mark x ;
add (w , x) to the BFS tree T ;
put x in the queue

end
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Breadth-First Search (cont.)

Lemma (7.5)

If an edge (u,w) belongs to a BFS tree such that u is a parent of w ,
then u has the minimal BFS number among vertices with edges
leading to w .

Lemma (7.6)

For each vertex w , the path from the root to w in T is a shortest
path from the root to w in G .

Lemma (7.7)

If an edge (v ,w) in E does not belong to T and w is on a larger
level, then the level numbers of w and v differ by at most 1.
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Breadth-First Search (cont.)

Algorithm Simple BFS(G , v);
begin

put v in Queue;
while Queue is not empty do

remove vertex w from Queue;
if w is unmarked then

mark w ;
perform preWORK on w ;
for all edges (w , x) with x unmarked do

put x in Queue
end
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Breadth-First Search (cont.)

Algorithm Simple Nonrecursive DFS(G , v);
begin

push v to Stack ;
while Stack is not empty do

pop vertex w from Stack ;
if w is unmarked then

mark w ;
perform preWORK on w ;
for all edges (w , x) with x unmarked do

push x to Stack
end
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Topological Sorting

Problem

Given a directed acyclic graph G = (V ,E ) with n vertices, label the
vertices from 1 to n such that, if v is labeled k , then all vertices that
can be reached from v by a directed path are labeled with labels > k .

Lemma (7.8)

A directed acyclic graph always contains a vertex with indegree 0.
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Topological Sorting (cont.)

Algorithm Topological Sorting(G );
initialize v .indegree for all vertices; /* by DFS */
G label := 0;
for i := 1 to n do

if vi .indegree = 0 then put vi in Queue;
repeat

remove vertex v from Queue;
G label := G label + 1;
v .label := G label ;
for all edges (v ,w) do

w .indegree := w .indegree − 1;
if w .indegree = 0 then put w in Queue

until Queue is empty

Yih-Kuen Tsay (IM.NTU) Basic Graph Algorithms Algorithms 2020 25 / 42



Single-Source Shortest Paths

Problem

Given a directed graph G = (V ,E ) and a vertex v , find shortest
paths from v to all other vertices of G .
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Shorted Paths: The Acyclic Case

Algorithm Acyclic Shortest Paths(G , v , n);
{Initially, w .SP =∞, for every node w .}
{A topological sort has been performed on G , . . .}
begin

let z be the vertex labeled n;
if z 6= v then

Acyclic Shortest Paths(G − z , v , n − 1);
for all w such that (w , z) ∈ E do

if w .SP + length(w , z) < z .SP then
z .SP := w .SP + length(w , z)

else v .SP := 0
end
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The Acyclic Case (cont.)

Algorithm Imp Acyclic Shortest Paths(G , v);
for all vertices w do w .SP := ∞;
initialize v .indegree for all vertices;
for i := 1 to n do

if vi .indegree = 0 then put vi in Queue;
v .SP := 0;
repeat

remove vertex w from Queue;
for all edges (w , z) do

if w .SP + length(w , z) < z .SP then
z .SP := w .SP + length(w , z);

z .indegree := z .indegree − 1;
if z .indegree = 0 then put z in Queue

until Queue is empty
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Shortest Paths: The General Case

Algorithm Single Source Shortest Paths(G , v);
// Dijkstra’s algorithm
begin

for all vertices w do
w .mark := false;
w .SP := ∞;

v .SP := 0;
while there exists an unmarked vertex do

let w be an unmarked vertex s.t. w .SP is minimal;
w .mark := true;
for all edges (w , z) such that z is unmarked do

if w .SP + length(w , z) < z .SP then
z .SP := w .SP + length(w , z)

end

Time complexity: O((|E |+ |V |) log |V |) (using a min heap).
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The General Case (cont.)

a v b

c
d

e

f g h

1 5

2
4 2

9 3

9
2 3

4 1

v a b c d e f g h

a 0 1 5 ∞ 9 ∞ ∞ ∞ ∞

c 0 1 5 3 9 ∞ ∞ ∞ ∞

b 0 1 5 3 7 ∞ 12 ∞ ∞

d 0 1 5 3 7 8 12 ∞ ∞

e 0 1 5 3 7 8 12 ∞ ∞

h 0 1 5 3 7 8 12 11 9

g 0 1 5 3 7 8 12 11 9

f 0 1 5 3 7 8 12 11 9

Figure: An example of the single-source shortest-paths algorithm.
Source: redrawn from [Manber 1989, Figure 7.18].
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Minimum-Weight Spanning Trees

Problem

Given an undirected connected weighted graph G = (V ,E ), find a
spanning tree T of G of minimum weight.

Theorem

Let V1 and V2 be a partition of V and E (V1,V2) be the set of edges
connecting nodes in V1 to nodes in V2. The edge with the minimum
weight in E (V1,V2) must be in the minimum-cost spanning tree of G .
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Minimum-Weight Spanning Trees (cont.)

u’

v’u

v

V1

V2

If cost(u, v) is the smallest among E (V1,V2), then {u, v} must be in
the minimum spanning tree.
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Minimum-Weight Spanning Trees (cont.)

w
u

Figure: Finding the next edge of the MCST.
Source: redrawn from [Manber 1989, Figure 7.19].
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Minimum-Weight Spanning Trees (cont.)

Algorithm MST(G );
// A variant of Prim’s algorithm
begin

initially T is the empty set;
for all vertices w do

w .mark := false; w .cost := ∞;
let (x , y) be a minimum cost edge in G ;
x .mark := true;
for all edges (x , z) do

z .edge := (x , z); z .cost := cost(x , z);
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Minimum-Weight Spanning Trees (cont.)

while there exists an unmarked vertex do
let w be an unmarked vertex with minimal w .cost;
if w .cost =∞ then

print “G is not connected”; halt
else

w .mark := true;
add w .edge to T ;
for all edges (w , z) do

if not z .mark then
if cost(w , z) < z .cost then

z .edge := (w , z); z .cost := cost(w , z)
end
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Minimum-Weight Spanning Trees (cont.)

Algorithm Another MST(G );
// Prim’s algorithm
begin

initially T is the empty set;
for all vertices w do

w .mark := false; w .cost := ∞;
x .mark := true; /* x is an arbitrary vertex */
for all edges (x , z) do

z .edge := (x , z); z .cost := cost(x , z);
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Minimum-Weight Spanning Trees (cont.)

while there exists an unmarked vertex do
let w be an unmarked vertex with minimal w .cost;
if w .cost =∞ then

print “G is not connected”; halt
else

w .mark := true;
add w .edge to T ;
for all edges (w , z) do

if not z .mark then
if cost(w , z) < z .cost then

z .edge := (w , z);
z .cost := cost(w , z)

end

Time complexity: same as that of Dijkstra’s algorithm.
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Minimum-Weight Spanning Trees (cont.)
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Minimum-Weight Spanning Trees (cont.)

while there exists an unmarked vertex do
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Minimum-Weight Spanning Trees (cont.)

a v b

c
d

e

f g h

1 6

2
4 7

9 3

10
13 11

12 5

v a b c d e f g h

v - v(1) v(6) ∞ v(9) ∞ ∞ ∞ ∞
a - - v(6) a(2) v(9) ∞ ∞ ∞ ∞
c - - v(6) - c(4) ∞ c(10) ∞ ∞
d - - v(6) - - d(7) c(10) d(12) ∞
b - - - - - b(3) c(10) d(12) ∞
e - - - - - - c(10) d(12) e(5)
h - - - - - - c(10) h(11) -
f - - - - - - − h(11) -
g - - - - - - − - -

Figure: An example of the minimum-cost spanning-tree algorithm.
Source: redrawn from [Manber 1989, Figure 7.21].

Yih-Kuen Tsay (IM.NTU) Basic Graph Algorithms Algorithms 2020 38 / 42



All Shortest Paths

Problem

Given a weighted graph G = (V ,E ) (directed or undirected) with
nonnegative weights, find the minimum-length paths between all
pairs of vertices.
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Floyd’s Algorithm

Algorithm All Pairs Shortest Paths(W );
begin
{initialization}
for i := 1 to n do

for j := 1 to n do
if (i , j) ∈ E then W [i , j ] := length(i , j)
else W [i , j ] := ∞;

for i := 1 to n do W [i , i ] := 0;

for m := 1 to n do {the induction sequence}
for x := 1 to n do

for y := 1 to n do
if W [x ,m] + W [m, y ] < W [x , y ] then

W [x , y ] := W [x ,m] + W [m, y ]
end
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Transitive Closure

Problem

Given a directed graph G = (V ,E ), find its transitive closure.

Algorithm Transitive Closure(A);
begin
{initialization omitted}
for m := 1 to n do

for x := 1 to n do
for y := 1 to n do

if A[x ,m] and A[m, y ] then
A[x , y ] := true

end
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Transitive Closure (cont.)

Algorithm Improved Transitive Closure(A);
begin
{initialization omitted}
for m := 1 to n do

for x := 1 to n do
if A[x ,m] then

for y := 1 to n do
if A[m, y ] then

A[x , y ] := true
end
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