## Homework Assignment \#3

## Due Time/Date

2:10PM Tuesday, October 6, 2020. Late submission will be penalized by $20 \%$ for each working day overdue.

## Note

Please write or type your answers on A4 (or similar size) paper. Drop your homework by the due time in Yih-Kuen Tsay's mail box on the first floor of Management College Building 2. You may discuss the problems with others, but copying answers is strictly forbidden.

## Problems

There are five problems in this assignment, each accounting for 20 points. (Note: problems marked with "(X.XX)" are taken from [Manber 1989] with probable adaptation.)

1. (3.4) Below is a theorem from Manber's book:

For all constants $c>0$ and $a>1$, and for all monotonically increasing functions $f(n)$, we have $(f(n))^{c}=o\left(a^{f(n)}\right)$.
Prove, by using the above theorem, that for all constants $a, b>0,\left(\log _{2} n\right)^{a}=o\left(n^{b}\right)$.
2. (3.5) For each of the following pairs of functions, say whether $f(n)=O(g(n))$ and/or $f(n)=\Omega(g(n))$. Justify your answers.

|  | $f(n)$ | $g(n)$ |
| :--- | :--- | :--- |
| (a) | $(\log n)^{\log n}$ | $\frac{n}{\log n}$ |
| (b) | $n^{3} 2^{n}$ | $3^{n}$ |

3. Suppose $f(n)$ is a strictly increasing function, i.e., if $n_{1}<n_{2}$, then $f\left(n_{1}\right)<f\left(n_{2}\right)$, and $f(n)=O(g(n))$. Is it true that $\log f(n)=O(\log g(n))$ ? Please justify your answer. What about $2^{f(n)}=O\left(2^{g(n)}\right)$ ? What if $f(n)$ is constant?
4. (3.12) Solve the following recurrence relation:

$$
\left\{\begin{array}{l}
T(1)=1 \\
T(n)=n+\sum_{i=1}^{n-1} T(i), \quad n \geq 2
\end{array}\right.
$$

5. (3.18) Consider the recurrence relation

$$
T(n)=2 T(n / 2)+1, T(2)=1 .
$$

We try to prove that $T(n)=O(n)$ (we limit our attention to powers of 2 ). We guess that $T(n) \leq c n$ for some (as yet unknown) $c$, and substitute $c n$ in the expression. We have to show that $c n \geq 2 c(n / 2)+1$. But this is clearly not true. Find the correct solution of this recurrence (you can assume that $n$ is a power of 2), and explain why this attempt failed.

