Suggested Solutions to Midterm Problems

1. Construct a Gray code of length $\left\lceil\log _{2} 14\right\rceil(=4)$ for 14 objects. Please explain how the Gray code is constructed systematically from Gray codes of smaller lengths.
Solution. Let $\left(c_{1}, c_{2}, \ldots, c_{n}\right)^{R}$ denote the sequence $c_{n}, c_{n-1}, \ldots, c_{1}$.
$14=2 \times 7 ; 7=8-1$ (we are using reversed induction here) $; 8=2 \times 4 ; 4=2 \times 2$. So, we will start with building a code for 2 objects and then codes for $4,8,7$, and finally 14 objects.
Code of length 1 for 2 objects: 0,1 .
Code \#1 of length 2 for 2 objects: 00, 01.
Code \#2 of length 2 for 2 objects: 10, 11 .
Code of length 2 for 4 objects: $00,01,(10,11)^{R}$.
Code of length 2 for 4 objects: $00,01,11,10$.
Code \#1 of length 3 for 4 objects: $000,001,011,010$.
Code \#2 of length 3 for 4 objects: $100,101,111,110$.
Code of length 3 for 8 objects: $000,001,011,010,(100,101,111,110)^{R}$.
Code of length 3 for 8 objects: $000,001,011,010,110,111,101,100$.
Code of length 3 for 7 objects: $000,001,011,010,110,111,101$. (open)
Code \#1 of length 4 for 7 objects: 0000, 0001, 0011, 0010, 0110, 0111, 0101. (open)
Code \#2 of length 4 for 7 objects: 1000, 1001, 1011, 1010, 1110, 1111, 1101. (open)
Code of length 4 for 14 objects: $0000,0001,0011,0010,0110,0111,0101$, $(1000,1001,1011,1010,1110,1111,1101)^{R}$.
Code of length 4 for 14 objects: $0000,0001,0011,0010,0110,0111,0101$, $1101,1111,1110,1010,1011,1001,1000$.
2. The lattice points in the plane are the points with integer coordinates. Let T be a triangle such that all of its three vertices are lattice points; see the figure below. Let p be the number of lattice points that are on the boundary of T (including its vertices), and let q be the number of lattice points that are inside T. Prove [by induction] that the area of T is $\frac{p}{2}+q-1$.

Solution. The proof is by induction on $p+q$.
Base case $(p+q=3)$: In this case, $p=3$ and $q=0$. A triangle satisfying this condition must have a side of unit length and the height with that side as the base must be one; otherwise, the triangle would either have more than three lattice points on the boundary or have at least one lattice point inside the triangle. Therefore, its area is $\frac{1}{2}(1 \times 1)=\frac{1}{2}=$ $\frac{3}{2}+0-1=\frac{p}{2}+q-1$.

Inductive step $(p+q>3)$: A triangle with $p+q>3$ either (a) has at least one lattice point on the boundary that is not a vertex or (b) has at least one lattice point inside the triangle.
Case (a): Suppose the triangle has p_{1}, p_{2}, and p_{3} lattice points on the three sides respectively and $q(q \geq 0)$ lattice points inside; so, $p_{1}+p_{2}+p_{3}-3=p$. Without loss of generality, we assume that $p_{3}>2$ such that one of the p_{3} lattice points is not a vertex. Connect the non-vertex lattice point to the opposite vertex with a line segment, to divide the triangle into two that share the line segment as a side. Suppose the new shared side has p_{4} lattice points and the side with p_{3} lattice points is divided into two smaller sides, each with p_{3}^{\prime} and $p_{3}^{\prime \prime}$ lattice points respectively. Clearly, $p_{3}^{\prime}+p_{3}^{\prime \prime}-1=p_{3}$, as the two smaller sides share a vertex. Now, one of the smaller triangles has p_{1}, p_{3}^{\prime}, and p_{4} lattice points on the three sides and the other has $p_{2}, p_{3}^{\prime \prime}$, and p_{4} lattice points on the three sides. Suppose they respectively have $q^{\prime}\left(q^{\prime} \geq 0\right)$ and $q^{\prime \prime}\left(q^{\prime \prime} \geq 0\right)$ lattice points inside. Clearly, $p_{4}-2+q^{\prime}+q^{\prime \prime}=q$. From the induction hypothesis, the area of the first smaller triangle is $\frac{p_{1}+p_{3}^{\prime}+p_{4}-3}{2}+q^{\prime}-1$ and that of the second smaller triangle is $\frac{p_{2}+p_{3}^{\prime \prime}+p_{4}-3}{2}+q^{\prime \prime}-1$. The area of the original triangle, therefore, is $\left(\frac{p_{1}+p_{3}^{\prime}+p_{4}-3}{2}+q^{\prime}-1\right)+\left(\frac{p_{2}+p_{3}^{\prime \prime}+p_{4}-3}{2}+q^{\prime \prime}-1\right)$, which equals $\frac{p_{1}+p_{2}+p_{3}^{\prime}+p_{3}^{\prime \prime}}{2}+p_{4}-3+q^{\prime}-1+q^{\prime \prime}-1=\frac{p_{1}+p_{2}+p_{3}+1}{2}+p_{4}+q^{\prime}+q^{\prime \prime}-5=$ $\frac{p_{1}+p_{2}+p_{3}-3}{2}+2+p_{4}+q^{\prime}+q^{\prime \prime}-5=\frac{p}{2}+2+\left(p_{4}-2+q^{\prime}+q^{\prime \prime}\right)+2-5=\frac{p}{2}+q-1$.
Case (b): Suppose the triangle has p_{1}, p_{2}, and p_{3} lattice points on the three sides respectively and $q(q>0)$ lattice points inside; so, $p_{1}+p_{2}+p_{3}-3=p$. Select a lattice point that is inside the triangle and connect it to the three vertices with three line segments, to divide the triangle into three, every two of which share one newly drawn line segment as a side. The rest of the proof is similar to that of Case (a).
3. Consider labeling the nodes of a full binary tree level by level, from top to bottom and left to right, with the numbers 1 through n, where n is the number of nodes in the tree. Prove by induction that, for an internal node labeled i, its left and right children are labeled $2 i$ and $2 i+1$ respectively.
Solution. Let us count the levels of a full binary tree from 0 , the root being on Level 0 , its children on Level 1, etc.
We claim and prove by induction that there are 2^{l} nodes on Level l and the labeling as stated in the problem gives the 2^{l} nodes numbers 2^{l} through $2^{l+1}-1$, for every l such that $2^{l+1}-1 \leq n$. This implies that, for an internal node labeled $i=2^{l}+j, 0 \leq j \leq 2^{l}-1$, it is on Level l and has j siblings to the left, which totally have $2 j$ children on Level $l+1$ labeled 2^{l+1} through $2^{l+1}+2 j-1$. So, the two children of the node labeled i are labeled $\left(2^{l+1}+2 j-1\right)+1=2\left(2^{l}+j\right)=2 i$ and $\left(2^{l+1}+2 j-1\right)+2=2\left(2^{l}+j\right)+1=2 i+1$ respectively, which is what the problem statement requires to be proved. Below is a proof of the claim by induction on the level l.
Base case $(l=0)$: the root is the only node on Level 0 and is labeled $1=2^{0}$.
Inductive step $\left(l>0\right.$ s.t. $\left.2^{l+1}-1 \leq n\right)$: The nodes on Level l are children of those on Level $l-1$. From the induction hypothesis, there are 2^{l-1} nodes on Level $l-1$. As each of the 2^{l-1} nodes has two children, there are 2^{l} nodes on Level l. Also, from the induction hypothesis, the 2^{l-1} nodes on Level $l-1$ are labeled 2^{l-1} through $2^{l}-1$. Therefore, the 2^{l} nodes on Level l should be labeled $\left(2^{l}-1\right)+1$ through $\left(2^{l}-1\right)+2^{l}$, i.e., 2^{l} through $2^{l+1}-1$.
4. Consider the problem of merging two skylines, which is a useful building block for computing the skyline of a number of buildings. A skyline is an alternating sequence of x
coordinates and y coordinates (heights), ending with an x coordinate (as discussed in class). The sequence of coordinates may be conveniently stored in an array, say A, with $A[0]$ storing the first x coordinate, $A[1]$ the first y coordinate, $A[2]$ the second x coordinate, etc.

Design a linear-time procedure that prints out the resulting skyline from merging two given skylines. Please present the procedure in suitable pseudocode. The procedure should be named merge_skylines and invoked by merge_skylines (A, m, B, n), where A and B are the two input skylines and $\mathrm{A}[\mathrm{m}]$ and $\mathrm{B}[\mathrm{n}]$ store the final x coordinate of skyline A and that of skyline B respectively. Does your procedure really run in $O(m+n)$ time? Please explain.

Solution.

```
merge_skylines (A,m,B,n)
// assume m,n >= 2.
begin
    if \(A[0]<B[0]\) then
        print \(A[0], A[1]\);
        merge_a(A[1], 0, A[2..m], m-2, B, n)
    else
        if \(\mathrm{A}[0]>\mathrm{B}[0]\) then
            print \(\mathrm{B}[0], \mathrm{B}[1]\);
            merge_b(0, \(B[1], A, m, B[2 . . n], n-2)\)
        else // \(A[0]=B[0]\)
            if \(A[1]<B[1]\) then
                print \(\mathrm{B}[0], \mathrm{B}[1]\);
                merge_b(A[1], \(B[1], A[2 . . m], m-2, B[2 . . n], n-2)\)
            else // \(A[1]>B[1]\) or \(A[1]=B[1]\) (given \(A[0]=B[0])\)
                print A[0], A[1];
                merge_a(A[1], B[1], A[2..m], m-2, B[2..n], \(n-2\) )
            end if
        end if
    end if
end
```

```
merge_a(ya, yb, A, m, B, n);
// ya, yb are the previous y coordinates of \(A\) and \(B\), respectively.
// ya > yb.
begin
    if \(m=0\) and \(n=0\) then
        if \(A[0]<B[0]\) then
                print \(A[0], y b, B[0]\)
        else
            print A[0]
        end if;
        return
    end if;
    if \(\mathrm{m}=0\) then
        if \(\mathrm{A}[0]<\mathrm{B}[0]\) then
```

```
        print A[0], yb, each entry of B
    else
        if ya >= B[1] then
            merge_a(ya, B[1], A, m, B[2..n], n-2)
        else
            print B[0], B[1];
            merge_b(ya, B[1], A, m, B[2..n], n-2)
    end if;
    return
end if;
if n = 0 then
    if A[0] < B[0] then
        if A[1] < yb then
            print A[0], yb;
            merge_b(A[1], yb, A[2..m], m-2, B, n)
        else
            print A[0], A[1];
            merge_a(A[1], yb, A[2..m], m-2, B, n)
        end if
    else // A[0] >= B[0]
            print each entry of A
    end if;
    return
end if;
// m,n >= 2
if A[0] < B[0] then
    if A[1] > yb then
            print A[0], A[1];
            merge_a(A[1], yb, A[2..m], m-2, B, n)
        else
            print A[0], yb;
            merge_b(A[1], yb, A[2..m], m-2, B, n)
        end if
else
    if A[0] > B[0] then
            if B[1] > ya then
            print B[0], B[1];
            merge_b(ya, B[1], A, m, B[2..n], n-2)
            else
                merge_a(ya, B[1], A, m, B[2..n], n-2)
            end if
        else // A[0] = B[0]
            if A[1] < B[1] then
                    if B[1] != ya then
                    print B[0], B[1];
            end if;
            merge_b(A[1], B[1], A[2..m], m-2, B[2..n], n-2)
            else // A[1] > B[1] or A[1] = B[1] (given A[0] = B[0])
                    print A[0], A[1];
```

```
            merge_a(A[1], B[1], A[2..m], m-2, B[2..n], n-2)
            end if
        end if
        end if
end
merge_b(ya, yb, A, m, B, n);
// ya, yb are the previous y coordinates of A and B, respectively.
// ya < yb.
// analogous to merge_a.
```

5. Below is the pseudocode of the binary search algorithm we discussed in class. Would the code still be correct if we change the assignment "Middle $:=\left\lceil\frac{\text { Left }+ \text { Right }}{2}\right\rceil$ " to "Middle $:=$ $\left\lfloor\frac{\text { Left }+ \text { Right }}{2}\right\rfloor$ " for Middle to take instead the largest integer less than or equal to $\frac{\text { Left }+ \text { Right }}{2}$? Please justify your answer.
```
function Find ( \(z\), Left, Right) : integer;
begin
    if Left \(=\) Right then
        if \(X[\) Left \(]=z\) then Find \(:=\) Left
        else Find \(:=0\)
    else
        Middle : \(=\left\lceil\frac{\text { Left }+ \text { Right }}{2}\right\rceil\);
        if \(z<X\) [Middle \(]\) then
            Find \(:=\) Find \((z\), Left, Middle - 1)
        else
            Find \(:=\operatorname{Find}(z\), Middle, Right \()\)
end
```

```
Algorithm Binary_Search \((X, n, z)\);
begin
    Position := Find \((z, 1, n)\);
end
```

Solution. The code would be incorrect, if just that change is made. Consider $X[1 . .2]=$ $[7,9]$, an array with two numbers 7 and 9 . Suppose we invoke Binary_Search $(X, 2,6)$ to find out whether 6 is in X. The call in turns invokes $\operatorname{Find}(6,1,2)$, whose execution will set Middle to $\left\lfloor\frac{L \text { Left }+ \text { Right }}{2}\right\rfloor=\left\lfloor\frac{1+2}{2}\right\rfloor=1$. Since $z=6<7=X[1]=X[$ Middle $]$, the execution will invoke Find(z, Left, Middle - 1), i.e., Find ($6,1,0$), which will result in an access to $X[0]$, an erroreous behavior.
6. Given the array below as input [to the Mergesort algorithm], what are the contents of array TEMP after the merge part is executed for the first time and what are the contents of TEMP when the algorithm terminates? Assume that each entry of TEMP has been initialized to 0 when the algorithm starts.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | 9 | 2 | 6 | 5 | 10 | 8 | 3 | 1 | 12 | 4 | 11 |

Solution. The contents of array TEMP after the merge part is executed for the first time:

1	2	3	4	5	6	7	8	9	10		11	12
2	7	0	0	0	0	0	0	0	0	0	0	

The contents of array TEMP when the algorithm terminates:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 0 | 0 |

7. Consider rearranging the following array into a max heap using the bottom-up approach.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 2 | 8 | 5 | 1 | 14 | 7 | 6 | 3 | 11 | 10 | 13 | 15 | 12 | 9 |

Please show the result (i.e., the contents of the array) after a new element is added to the current collection of heaps (at the bottom) until the entire array has become a heap.

Solution.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 2 | 8 | 5 | 1 | 14 | 7 | 6 | 3 | 11 | 10 | 13 | 15 | 12 | 9 |
| 4 | 2 | 8 | 5 | 1 | 14 | $\underline{12}$ | 6 | 3 | 11 | 10 | 13 | 15 | $\underline{7}$ | 9 |
| 4 | 2 | 8 | 5 | 1 | $\underline{15}$ | 12 | 6 | 3 | 11 | 10 | 13 | $\underline{14}$ | 7 | 9 |
| 4 | 2 | 8 | 5 | $\underline{11}$ | 15 | 12 | 6 | 3 | $\underline{1}$ | 10 | 13 | 14 | 7 | 9 |
| 4 | 2 | 8 | $\underline{6}$ | 11 | 15 | 12 | $\underline{5}$ | 3 | 1 | 10 | 13 | 14 | 7 | 9 |
| 4 | 2 | $\underline{15}$ | 6 | 11 | $\underline{14}$ | 12 | 5 | 3 | 1 | 10 | 13 | $\underline{8}$ | 7 | 9 |
| 4 | $\underline{11}$ | 15 | 6 | $\underline{10}$ | 14 | 12 | 5 | 3 | 1 | $\underline{2}$ | 13 | 8 | 7 | 9 |
| $\underline{15}$ | 11 | $\underline{14}$ | 6 | 10 | $\underline{13}$ | 12 | 5 | 3 | 1 | 2 | $\underline{4}$ | 8 | 7 | 9 |

8. Draw a decision tree of the Heapsort algorithm (in increasing order) for the case of $A[1 . .3]$, i.e., $n=3$. In the decision tree, you must indicate (1) which two elements of the original input array are compared in each internal node and (2) the sorting result in each leaf. Please use $X_{1}, X_{2}, X_{3}(\operatorname{not} A[1], A[2], A[3])$ to refer to the elements (in this order) of the original input array A.

Solution.

Note: two or more of X_{1}, X_{2}, and X_{3} may be equal.
9. The next table is a precomputed table (for $B=b_{1} b_{2} \cdots b_{m}$) that plays a critical role in the KMP algorithm. Under what condition regarding $b_{1} b_{2} \cdots b_{i}, 2 \leq i \leq m$, will next $[i]$ get a 0 in the preprocessing? And under what condition can it be safely set to -1 (without missing a potential match when searching for B in another input string)?

Solution. The value of next $[i]$ is determined by the length of the longest prefix of $b_{1} b_{2} \cdots b_{i-1}$ that is also a suffix of $b_{1} b_{2} \cdots b_{i-1}$. When no such prefix exists, next $[i]$ gets a 0 .

During a search for string B in string A using KMP, when b_{j} is compared against a_{i} and the comparison fails, $b_{n e x t[j]+1}$ is tried next against a_{i}. When next $[j]=0$, it is b_{1} that is compared with a_{i}. If the comparison fails, then b_{1} will be compared against a_{i+1}, according to the case for next $[j]+1=0$, i.e., next $[j]=-1$. When $b_{1}=b_{j}$, the comparison between b_{1} and a_{i} is doomed to fail (since $b_{1}=b_{j} \neq a_{i}$) and the comparison could have been saved. To achieve the saving, we can set next $[j]$ to -1 (instead of 0) when b_{j} happens to be equal to b_{1}.
10. Given two strings $A=b b a a b a$ and $B=a b a b a$, what is the result of the minimal cost matrix $C[0 . .6,0 . .5]$, according to the algorithm discussed in class for changing A character by character into B? Aside from giving the cost matrix, please show the details of how the entry $C[4,3]$ is computed from the values of $C[3,2], C[3,3]$, and $C[4,2]$.

Solution.

		a	b	a	b	a
	0	1	2	3	4	5
b	1	1	1	2	3	4
b	2	2	1	2	2	3
a	3	2	2	1	2	2
a	4	3	3	2	2	2
b	5	4	3	3	2	3
a	6	5	4	3	3	2

$$
C[4,3]=\min \left\{\begin{array}{ll}
C[3,3]+1=1+1=2 & \left(\text { deleting } A_{4}\right) \\
C[4,2]+1=3+1=4 & \left(\text { inserting } B_{3}\right), \\
C[3,2]=2 & \left(A_{4}=B_{3}\right)
\end{array}\right\}=2
$$

Appendix

- The Mergesort algorithm:

```
Algorithm Mergesort ( \(X, n\) );
begin \(M_{-} \operatorname{Sort}(1, n)\) end
procedure M_Sort (Left, Right);
begin
    if Right - Left \(=1\) then
        if \(X[\) Left \(]>X[\) Right \(]\) then \(\operatorname{swap}(X[\) Left \(], X[\) Right \(])\)
    else if Left \(\neq\) Right then
        Middle \(:=\left\lceil\frac{1}{2}(\right.\) Left + Right \(\left.)\right\rceil\);
        M_Sort(Left, Middle - 1);
        M_Sort(Middle, Right);
        // the merge part
            \(i:=\) Left \(; ~ j:=\) Middle; \(k:=0 ;\)
            while \((i \leq\) Middle -1\()\) and \((j \leq\) Right \()\) do
                \(k:=k+1 ;\)
```

$$
\begin{gathered}
\text { if } X[i] \leq X[j] \text { then } \\
\text { TEMP }[k]:=X[i] ; i:=i+1 \\
\\
\text { else TEMP }[k]:=X[j] ; j:=j+1 ; \\
\text { if } j>\text { Right then } \\
\text { for } t:=0 \text { to Middle }-1-i \text { do } \\
X[\text { Right }-t]:=X[\text { Middle }-1-t] \\
\\
\text { for } t:=0 \text { to } k-1 \text { do } \\
X[\text { Left }+t]:=\text { TEMP }[1+t]
\end{gathered}
$$

- The KMP algorithm (assuming next):

Algorithm String_Match (A, n, B, m);
begin
$j:=1 ; i:=1 ;$
Start := 0;
while Start $=0$ and $i \leq n$ do if $B[j]=A[i]$ then
$j:=j+1 ; \quad i:=i+1$
else
$j:=n \operatorname{ext}[j]+1 ;$
if $j=0$ then
$j:=1 ; \quad i:=i+1 ;$
if $j=m+1$ then Start $:=i-m$
end

- The algorithm for computing the next table in the KMP algorithm:

```
Algorithm Compute_Next ( \(B, m\) );
begin
    next \([1]:=-1 ; n e x t[2]:=0 ;\)
    for \(i:=3\) to \(m\) do
        \(j:=\operatorname{next}[i-1]+1\);
        while \(B[i-1] \neq B[j]\) and \(j>0\) do
            \(j:=\operatorname{next}[j]+1 ;\)
        \(n e x t[i]:=j\)
```

end

