

Reduction

(Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Introduction

- The basic idea of *reduction* is to solve a problem with the solution to another "similar" problem.
- When Problem A can be reduced (efficiently) to Problem B, there are two consequences:
 - $ilde{*}$ A solution to Problem B may be used to solve Problem A.
- One should avoid the pitfall of reducing a problem to another that is too general or too hard.

Matching

- Given an undirected graph G = (V, E), a matching is a set of edges that do not share a common vertex.
- A maximum matching is one with the maximum number of edges.
- A maximal matching is one that cannot be extended by adding any other edge.

Bipartite Matching

- \bullet A bipartite graph G = (V, E, U) is a graph with $V \cup U$ as the set of vertices and E as the set of edges such that
 - $ilde{*}$ V and U are disjoint and
 - $ilde{*}$ The edges in E connect vertices from V to vertices in U.

Problem

Given a bipartite graph G = (V, E, U), find a maximum matching in G.

Bipartite Matching (cont.)

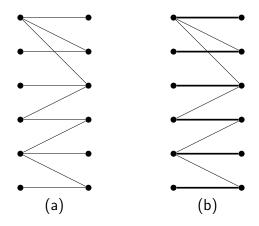


Figure: A bipartite graph and a maximum matching.

Source: adapted from [Manber 1989, Figure 7.37].

Bipartite Matching (cont.)

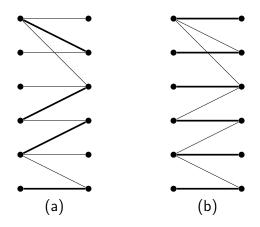


Figure: A maximal matching and a maximum matching.

Source: adapted from [Manber 1989, Figure 7.37].

Networks

- Solution Consider a directed graph, or network, G = (V, E) with two distinguished vertices: s (the source) with indegree 0 and t (the sink) with outdegree 0.
- \odot Each edge e in E has an associated positive weight c(e), called the *capacity* of e.

7 / 13

The Network Flow Problem

- A **flow** is a function f on E that satisfies the following two conditions:
 - 1. $0 \le f(e) \le c(e)$.
 - 2. $\sum_{u} f(u, v) = \sum_{w} f(v, w)$, for all $v \in V \{s, t\}$.
- The network flow problem is to maximize the flow f for a given network G.

Bipartite Matching to Network Flow

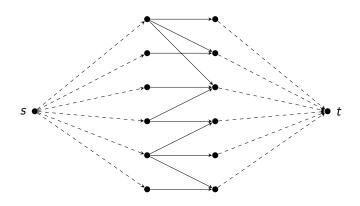


Figure: Reducing bipartite matching to network flow. Every edge has capacity 1.

Source: redrawn from [Manber 1989, Figure 7.39].

Bipartite Matching to Network Flow (cont.)

- Mapping from the input G = (V, E, U) of the bipartite matching problem to the input G' = (V', E') and c of the network flow problem:
 - $\overset{ ext{ iny }}{ ext{ iny }}$ The network is G'=(V',E') where
 - $V' = \{s\} \cup V \cup U \cup \{t\}$
 - **ω** $E' = \{(s, v) \mid v \in V\} \cup E \cup \{(u, t) \mid u \in U\}$
 - $ilde{*}$ The capacity for every $e \in E'$ is 1, i.e., $orall e \in E', c(e) = 1$.
- Correspondence between the two solutions
 - $ilde{*}$ A maximum flow f in G' defines a maximum matching M_f in G .
 - $\stackrel{*}{=}$ A maximum matching M in G induces a maximum flow f_M in G'.

Notations

- Let \overline{v} denote a vector (v_1, v_2, \dots, v_n) of n constants or n variables.
- \odot In the following, \overline{a} , \overline{b} , \overline{c} , and \overline{e} are vectors of n constants.
- $\cup{\circ}$ And, \overline{x} and \overline{y} are vectors of n variables.
- The (inner or dot) product $\overline{a} \cdot \overline{x}$ of two vectors \overline{a} and \overline{x} is defined as follows:

$$\overline{a}\cdot\overline{x}=\sum_{i=1}^n a_i\cdot x_i$$

Linear Programming

Objective function:

$$\overline{c}\cdot \overline{x}$$

Equality constraints:

$$\begin{array}{rcl}
\overline{e}_1 \cdot \overline{x} & = & d_1 \\
\overline{e}_2 \cdot \overline{x} & = & d_2 \\
& \vdots \\
\overline{e}_m \cdot \overline{x} & = & d_m
\end{array}$$

- Inequality constraints may be turned into equality constraints by introducing slack variables.
- Non-negative constraints: $x_j \ge 0$, for all j in P, where P is a subset of $\{1, 2, \dots, n\}$.
- The goal is to *maximize* (or *minimize*) the value of the objective function, subject to the equality constraints.

Network Flow to Linear Programming

- From the input G = (V, E) and c of the network flow problem to the objective function and constraints of linear programming:
 - Let x_1, x_2, \dots, x_n represent the flow values of the *n* edges.
 - Objective function:

$$\sum_{i \in S} x_i$$

where S is the set of edges leaving the source.

Inequality constraints:

$$x_i \le c_i$$
, for all $i, 1 \le i \le n$

where c_i is the capacity of edge i.

Equality constraints:

$$\sum_{i \text{ leaves } v} x_i - \sum_{j \text{ enters } v} x_j = 0, \text{ for every } v \in V \setminus \{s,t\}$$

Non-negative constraints: $x_i \ge 0$, for all i, $1 \le i \le n$.