
Algorithms 2021: NP-Completeness

(Based on [Manber 1989])

Yih-Kuen Tsay

December 28, 2021

1 P vs. NP

P vs. NP

• P denotes the class of all problems that can be solved by deterministic algorithms in polynomial time.

• NP denotes the class of all problems that can be solved by nondeterministic algorithms in polynomial
time.

/* Alternativley, NP problems may be defined as those whose positive solutions can be verified (using
a deterministic algorithm) in polynomial time. */

• A nondeterministic algorithm, when faced with a choice of several options, has the power to guess the
right one (if there is any).

/* Without loss of generality, you may assume that it is always a choice between two options. */

• We will focus on decision problems, whose answer is either yes or no.

2 Polynomial-Time Reductions

Decision as Language Recognition

• A decision problem can be viewed as a language-recognition problem.

• Let U be the set of all possible inputs to the decision problem and L ⊆ U be the set of all inputs for
which the answer to the problem is yes.

/* Every input is in essence a string. */

• We call L the language corresponding to the problem.

/* A set of strings is conventionally called a language in mathematics and theory of computing, very
much like a natural language which is essentially a set of meaningful sentences/strings in that language.
*/

• The decision problem is to recognize whether a given input belongs to L.

1

Polynomial-Time Reductions

• Let L1 and L2 be two languages from the input spaces U1 and U2.

• We say that L1 is polynomially reducible to L2 if there exists a conversion algorithm AC satisfying the
following conditions:

1. AC runs in polynomial time (deterministically).

2. u1 ∈ L1 if and only if AC(u1) = u2 ∈ L2.

AL1

AC AL2
u1 u2 yes/no

(det. polynomial)

Polynomial-Time Reductions (cont.)

Theorem 1 (11.1). If L1 is polynomially reducible to L2 and there is a polynomial-time algorithm for L2,
then there is a polynomial-time algorithm for L1.

/* Suppose f is an O(nk1)-time conversion algorithm from L1 to L2, which has an O(nk2)-time algorithm.
Given an input w to L1, the output f(w) produced by f is at most O(|w|k1) long. An algorithm for L1

starts by computing f(w) (given w as input) and then runs the algorithm for L2 on f(w). These take at
most O(|w|k1) + O((|w|k1)k2) = O(|w|k1×k2) time. */

Theorem 2 (11.2: transitivity). If L1 is polynomially reducible to L2 and L2 is polynomially reducible to
L3, then L1 is polynomially reducible to L3.

3 NP-Completeness

NP-Completeness

• A problem X is called an NP-hard problem if every problem in NP is polynomially reducible to X.

• A problem X is called an NP-complete problem if (1) X belongs to NP, and (2) X is NP-hard.

Lemma 3 (11.3). A problem X is an NP-complete problem if (1) X belongs to NP , and (2′) Y is
polynomially reducible to X, for some NP-complete problem Y .

/* Proving the NP-hardness of X from scratch, i.e., “every problem in NP is polynomially reducible
to X”, is in general very hard. The lemma makes it possible to consider just the reduction from an
existing NP-hard problem to X. */

• If there exists an efficient (polynomial-time) algorithm for any NP-complete problem, then there exist
efficient algorithms for all NP-complete (and hence all NP) problems.

2

4 The SAT Problem

The Satisfiability Problem (SAT)

Problem 4. Given a Boolean expression in conjunctive normal form, determine whether it is satisfiable.

• A Boolean expression is in conjunctive normal form (CNF) if it is the product of several sums, e.g.,
(x + y + z̄) · (x̄ + y + z) · (x̄ + ȳ + z̄).

• A Boolean expression is said to be satisfiable if there exists an assignment of 0s and 1s to its variables
such that the value of the expression is 1.

SAT (cont.)

Theorem 5 (Cook’s Theorem). The SAT problem is NP-complete.

• This is our starting point for showing the NP-completeness of some other problems.

• Their NP-hardness will be proved by reduction directly or indirectly from SAT.

NP-Complete Problems

SAT

Clique 3SAT

Vertex
Cover

Dominating
Set

3-Colorability

4 3

1

2

5

Figure: The order of NP-completeness proofs we will study.
Source: redrawn from [Manber 1989, Figure 11.1].

5 Vertex Cover

Vertex Cover

Problem 6. Given an undirected graph G = (V,E) and an integer k, determine whether G has a vertex
cover containing ≤ k vertices.

A vertex cover of G is a set of vertices such that every edge in G is incident to at least one of these
vertices.

Theorem 7 (11.4). The vertex-cover problem is NP-complete.

Main idea: by reduction from the clique problem.

3

Vertex Cover (cont.)
Proof outline:

• The vertex-cover problem is in NP, since given a graph we can guess a subset of vertices and check
whether it contains ≤ k vertices and is indeed a vertex cover in ploynomial time.

• The clique problem, which is NP-complete, is polynomially reducible to the vertex-cover problem.

– Let G(V,E) and k represent an arbitrary instance of the clique problem.

– Let G(V,E) be the complement of G; computing the complement of a graph takes only polynomial
time.

– Claim: G has a clique of size ≥ k iff G has a vertex cover of size ≤ |V | − k.

/* If C ⊆ V is a clique of size k in G, then V −C is a vertex cover of size |V | − k in G. As every
pair of vertices in C are connected by an edge in G, no edge exits between any vertices of C in
G. Therefore, a vertex cover for G does not require any vertex from C, which implies that V −C
is a vertex cover for G.

Conversely, if D is a vertex cover of size k in G, then V −D is a clique of size |V | − k in G (note
that |V | − (|V | − k) = k). */

6 Dominating Set

Dominating Set

Problem 8. Given an undirected graph G = (V,E) and an integer k, determine whether G has a dominating
set containing ≤ k vertices.

A dominating set D is a set of vertices such that every vertex of G is either in D or is adjacent to some
vertex in D.

Theorem 9 (11.5). The dominating-set problem is NP-complete.

By reduction from the vertex-cover problem.
/* Below is a detailed proof, in which we make clearer certain conditions that are omitted or implicitly
assumed in Manber’s book. With the proof as an example, we also wish to clarify how the definition of
polynomial-time reduction is followed in a typical NP-completeness proof.

The problem is obviously in NP, as we can guess a set of vertices and check in polynomial time whether
the set is of size ≤ k and is indeed a dominating set of the given graph G. To prove that it is NP-hard,
we demonstrate a polynomial-time reduction from the vertex-cover problem, which is known to be NP-hard.
An input (G1 = (V1, E1), k1), which is a pair of a graph and an integer, to the vertex cover problem can be
converted to an input (G2 = (V2, E2), k2) to the dominating set problem in the following manner:

To obtain G2, we first remove all isolated vertices (which are not connected to any other vertex) from
V1. We then add, for each edge {u, v} in E, a vertex uv and two edges {u, uv} and {uv, v}. In other words,
we transform every edge into a triangle. Finally, we make k2 simply equal to k1. This conversion apparently
can be done by a deterministic algorithm in polynomial time.

We need to show that G1 has a vertex cover of size ≤ k1 if and only if G2 has a dominating set of size
≤ k2. But before doing so, we deviate to make a contrast with the definition of polynomial-time reduction
(which can be found in the appendix). The input spaces Uvc and Uds of the two problems are the same,
namely the set of all possible pairs of a graph and an integer. The language Lvc of the vertex cover problem
is the set of all (G, k) such that G has a vertex cover of size ≤ k, while the language Lds of the dominating
set problem is the set of all (G, k) such that G has a dominating set of size ≤ k. The proof obligation “G1

has a vertex cover of size ≤ k1 if and only if G2 has a dominating set of size ≤ k2” is derived from the
statement “(G1, k1) ∈ Lvc iff (G2, k2) ∈ Lds”. (End of Deviation)

4

The “only if” part: Suppose G1 has a vertex cover C of size ≤ k1. Remove all isolated vertices in C
to obtain another vertex cover C ′ of G1 (isolated vertices are not usual for covering an edge). C ′ is also
a subset of V2 and |C ′| ≤ |C| ≤ k1 = k2. We claim that C ′ is a dominating set of G2. Every vertex u in
V2 that comes from V1 is an end vertex of some edge {u, v} ∈ E1. Since {u, v} is covered by C ′, either u
or v must be in C ′, implying that u is dominated by C ′, i.e., u is either in C ′ or adjacent to some vertex
(namely v) in C ′. Every new vertex uv that was added for edge {u, v} is adjacent to both u and v and is
also dominated, as again one of u and v must be in C ′.

The “if” part: Suppose G2 has a dominating set D of size ≤ k2. D may not be a subset of V1, as D
may contain vertices that were added in the conversion. Replace every vertex uv in D, which was added for
edge {u, v}, by either u or v to obtain a new set D′. Since every replaced vertex is adjacent to the replacing
vertex, D′ remains a dominating set of G2. D′ is a subset of V1 and |D′| ≤ |D| ≤ k2 = k1 (|D′| is not
necessarily equal to |D|). We claim that D′ is also a vertex cover of G1. For every edge {u, v} in E1, either
u or v is in D′; otherwise, the added vertex uv in V2 corresponding to {u, v} would not be dominated by D′.
Therefore, every edge of G1 is covered by D′. */

Dominating Set (cont.)

vw

v

vz

z

zu

u

uw

w

vu

Figure: The dominating-set reduction.
Source: redrawn from [Manber 1989, Figure 11.2].

7 3SAT

3SAT

Problem 10. Given a Boolean expression in CNF such that each clause contains exactly three variables,
determine whether it is satisfiable.

Theorem 11 (11.6). The 3SAT problem is NP-complete.

By reduction from the regular SAT problem.

5

3SAT (cont.)

• From an arbitrary clause (x1 +x2 + · · ·+xk), where k 6= 3, of the SAT problem to clauses of the 3SAT
problem:

– When k ≥ 4,
(x1 + x2 + y1)·
(x3 + y1 + y2)·
(x4 + y2 + y3)·

...
(xk−2 + yk−4 + yk−3)·

(xk−1 + xk + yk−3)

/* For the original boolean expresion in SAT to be true, at least one of x1, x2, . . ., and xk must
get a 1. Suppose it is x1. We may then set y1 to be 0 and y1 to be 1, y2 to be 0 and y2 to be 1,
etc. Each clause in the coverted expression will evaluate to 1.

Conversely, if all clauses in the coverted expression can be made true at the same time, then
at least one of x1, x2, . . ., and xk must get a 1. If all of x1, x2, . . ., and xk were 0, then the
converted expression would become (y1) · (y1 + y2) · (y2 + y3) · · · · · (yk−4 + yk−3) · (yk−3), which
is not satisfiable, a contradiction. */

– When k = 2,
(x1 + x2 + w) · (x1 + x2 + w)

– When k = 1,
(x1 + y + z) · (x1 + y + z) · (x1 + y + z) · (x1 + y + z)

/* The new variables must be distinct across the different original clauses. */

8 Clique

Clique

Problem 12. Given an undirected graph G = (V,E) and an integer k, determine whether G contains a
clique of size ≥ k.

A clique C is a subgraph of G such that all vertices in C are adjacent to all other vertices in C.

Theorem 13 (11.7). The clique problem is NP-complete.

By reduction from the SAT problem.

Clique (cont.)

x

y

z̄

x̄

ȳ

z

y

z̄

6

Figure: An example of the clique reduction for the expression (x + y + z̄) · (x̄ + ȳ + z) · (y + z̄).
Source: redrawn from [Manber 1989, Figure 11.3].

/* Create a group of vertices for each clause, with a vertex representing a literal (a variable or its
complement) in the clause. Connect any two variables from two different groups, except when they are a
pair of a variable and its complement.

The boolean expression (with k clauses) in SAT is satisfiable iff the converted graph has a clique of size
k .*/

9 3-Coloring

3-Coloring

Problem 14. Given an undirected graph G = (V,E), determine whether G can be colored with three colors.

Theorem 15 (11.8). The 3-coloring problem is NP-complete.

By reduction from the 3SAT problem.

3-Coloring (cont.)

A

T F

y z̄

ȳ z

x x̄

Figure: The first part of the construction in the reduction of 3SAT to 3-coloring.
Source: redrawn from [Manber 1989, Figure 11.4].

/* Suppose there are just three boolean variables x, y, and z in the boolean expression. This construction
ensures that, if a variable is set to 1, then its complement is set to 0, and vice versa. Assigning the value
of 0 to a boolean variable corresponds to coloring the representing vertex with color F , while the value of 1
corresponds to color T . */

3-Coloring (cont.)

7

I I

I

O O

O

T T

Tx

y z

Figure: The subgraphs corresponding to the clauses in the reduction of 3SAT to 3-coloring.
Source: redrawn from [Manber 1989, Figure 11.5].

/* For each clause, we create a graph component like the above, which is illustrated for the case of
(x+ y + z). The construction ensures that, if a literal in a clause gets a 1 (the representing vertex is colored
T), then this part of the graph can be colored in three colors, and vice versa. */

3-Coloring (cont.)

A

T

F

x̄

z
x z̄

ȳ y

Figure: The graph corresponding to (x̄ + ȳ + z) · (x̄ + y + z̄).
Source: redrawn from [Manber 1989, Figure 11.6].

/* The boolean expression in 3SAT is satisfiable iff the converted graph is colorable in three colors. */

10 More NP-Complete Problems

More NP-Complete Problems

• Independent set: An independent set in an undirected graph is a set of vertices no two of which
are adjacent. The problem is to determine, given a graph G and an integer k, whether G contains an
independent set with ≥ k vertices.

/* Reduction from the clique problem. */

8

• Hamiltonian cycle: A Hamiltonian cycle in a graph is a (simple) cycle that contains each vertex
exactly once. The problem is to determine whether a given graph contains a Hamiltonian cycle.

/* Reduction from the SAT or vertex cover problem, which is a bit involved. */

• Travelling salesman: The input includes a set of cities, the distances between all pairs of cities, and
a number D. The problem is to determine whether there exists a (travelling-salesman) tour of all the
cities having total length ≤ D.

/* Reduction from the Hamiltonian cycle problem. */

More NP-Complete Problems (cont.)

• Partition: The input is a set X where each element x ∈ X has an associated size s(x). The problem
is to determine whether it is possible to partition the set into two subsets with exactly the same total
size.

/* Reduction from the 3-dimensional matching problem (not covered here), which in turn can be proven
NP-hard by reduction from the 3SAT probelm. */

• Knapsack: The input is a set X, where each element x ∈ X has an associated size s(x) and value
v(x), and two other numbers S and V . The problem is to determine whether there is a subset B ⊆ X
whose total size is ≤ S and whose total value is ≥ V .

/* Reduction from the partition problem. */

• Bin packing: The input is a set of numbers {a1, a2, · · · , an} and two other numbers b and k. The
problem is to determine whether the set can be partition into k subsets such that the sum of numbers
in each subset is ≤ b.

/* Reduction from the partition problem. */

9

