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Introduction

The purpose of algorithm analysis is to predict the behavior
(running time, space requirement, etc.) of an algorithm without
implementing it on a specific computer. (Why?)

As the exact behavior of an algorithm is hard to predict, the
analysis is usually an approximation:

Relative to the input size (usually denoted by n): input
possibilities too enormous to elaborate
Asymptotic: should care more about larger inputs
Worst-Case: easier to do, often representative (Why not
average-case?)

Such an approximation is usually good enough for comparing
different algorithms for the same problem.
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Complexity

Theoretically, “complexity of an algorithm” is a more precise
term for “approximate behavior of an algorithm”.

Two most important measures of complexity:

Time Complexity
an upper bound on the number of steps that the algorithm
performs.
Space Complexity
an upper bound on the amount of temporary storage required
for running the algorithm (excluding the input, the output, and
the program itself).

We will focus on time complexity.
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Comparing Running Times

How do we compare the following running times?

1. 100n
2. 2n2 + 50
3. 100n1.8

We will study an approach (the O notation) that allows us to
ignore constant factors and concentrate on the behavior as n
goes to infinity.

For most algorithms, the constants in the expressions of their
running times tend to be small.
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The O Notation

A function g(n) is O(f (n)) for another function f (n) if there
exist constants c and N such that, for all n ≥ N , g(n) ≤ cf (n).

The function g(n) may be substantially less than cf (n); the O
notation bounds it only from above.

The O notation allows us to ignore constants conveniently.

Examples:

5n2 + 15 = O(n2).
(cf. 5n2 + 15 ≤ O(n2) or 5n2 + 15 ∈ O(n2))
5n2 + 15 = O(n3).
(cf. 5n2 + 15 ≤ O(n3) or 5n2 + 15 ∈ O(n3))
As part of an expression like T (n) = 3n2 + O(n).
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The O Notation (cont.)

No need to specify the base of a logarithm.

log2 n = log10 n
log10 2

= 1
log10 2

log10 n.

For example, we can just write O(log n).

O(1) denotes a constant.
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Properties of O

We can add and multiply with O.

Lemma (3.2)

1. If f (n) = O(s(n)) and g(n) = O(r(n)), then
f (n) + g(n) = O(s(n) + r(n)).
2. If f (n) = O(s(n)) and g(n) = O(r(n)), then
f (n) · g(n) = O(s(n) · r(n)).

However, we cannot subtract or divide with O. (Why?)

2n = O(n), n = O(n), and 2n − n = n 6= O(n − n).
n2 = O(n2), n = O(n2), and n2/n = n 6= O(n2/n2).
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Polynomial vs. Exponential

A function f (n) is monotonically growing (or monotonically
increasing) if n1 ≥ n2 implies that f (n1) ≥ f (n2).

An exponential function grows at least as fast as a polynomial
function does.

Theorem (3.1)

For all constants c > 0 and a > 1, and for all monotonically growing
functions f (n), (f (n))c = O(af (n)).

Examples:

Take n as f (n), nc = O(an).
Take loga n as f (n), (loga n)c = O(aloga n) = O(n).
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Speed of Growth

log n n n log n n2 n3 2n

0 1 0 1 1 2
1 2 2 4 8 4
2 4 8 16 64 16
3 8 24 64 512 256
4 16 64 256 4,096 65,536
5 32 160 1,024 32,768 4,294,967,296

Table: Function values.

Source: redrawn from [E. Horowitz et al. 1998, Table 1.7].
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Speed of Growth (cont.)

time1 time2 time3 time4
running times 1000 steps/sec 2000 steps/sec 4000 steps/sec 8000 steps/sec
log n 0.010 0.005 0.003 0.001
n 1 0.5 0.25 0.125
n log n 10 5 2.5 1.25
n1.5 32 16 8 4
n2 1000 500 250 125
n3 1,000,000 500,000 250,000 125,000
1.1n 1039 1039 1038 1038

Table: Running times (in seconds) under different assumptions (n = 1000).

Source: redrawn from [Manber 1989, Table 3.1].
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O, o, Ω, and Θ

Let T (n) be the number of steps required to solve a given
problem for input size n.

We say that T (n) = Ω(g(n)) or the problem has a lower bound
of Ω(g(n)) if there exist constants c and N such that, for all
n ≥ N , T (n) ≥ cg(n).

If a certain function f (n) satisfies both f (n) = O(g(n)) and
f (n) = Ω(g(n)), then we say that f (n) = Θ(g(n)).

We say that f (n) = o(g(n)) if lim
n→∞

f (n)

g(n)
= 0.
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Polynomial vs. Exponential (cont.)

An exponential function grows faster than a polynomial function
does.

Theorem (3.3)

For all constants c > 0 and a > 1, and for all monotonically growing
functions f (n), we have

(f (n))c = o(af (n)).

Consider a previous example again:
Take loga n as f (n). For all c > 0 and a > 1,

(loga n)c = o(aloga n) = o(n).
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Sums

Techniques for summing expressions are essential for complexity
analysis.

For example, given that we know

S0(n) =
n∑

i=1

1 = n

and

S1(n) =
n∑

i=1

i = 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
,

we want to compute the sum

S2(n) =
n∑

i=1

i2 = 12 + 22 + 32 + · · ·+ n2.
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Sums (cont.)

From
(i + 1)3 = i3 + 3i2 + 3i + 1,

we have
(i + 1)3 − i3 = 3i2 + 3i + 1.

23 − 13 = 3× 12 + 3× 1 + 1
33 − 23 = 3× 22 + 3× 2 + 1
43 − 33 = 3× 32 + 3× 3 + 1
· · · · · · · · ·

(n + 1)3 − n3 = 3× n2 + 3× n + 1
(n + 1)3 − 1 = 3× S2(n) + 3× S1(n) + S0(n)

(S3(n + 1)− S3(1))− S3(n) = 3× S2(n) + 3× S1(n) + S0(n)
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Sums (cont.)

So, we have

(n + 1)3 − 1 = 3× S2(n) + 3× S1(n) + S0(n).

Given S0(n) and S1(n), the sum S2(n) can be computed by
straightforward algebra.

Recall that the left-hand side (n + 1)3 − 1 equals
(S3(n + 1)− S3(1))− S3(n), a result from “shifting and
canceling” terms of two sums.

This generalizes to Sk(n), for k > 2.

Similar shifting and canceling techniques apply to other kinds of
sums.
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Recurrence Relations

A recurrence relation is a way to define a function by an
expression involving the same function.

The Fibonacci numbers, for example, can be defined as follows: F (1) = 1
F (2) = 1
F (n) = F (n − 2) + F (n − 1)

We would need k − 2 steps to compute F (k).

It is more convenient to have an explicit (or closed-form)
expression.

To obtain the explicit expression is called solving the recurrence
relation.
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Guessing and Proving an Upper Bound

Recurrence relation:

{
T (2) = 1
T (2n) ≤ 2T (n) + 2n − 1

Guess: T (n) = O(n log n).

Proof:

1. Base case: T (2) ≤ 2 log 2.
2. Inductive step: T (2n) ≤ 2T (n) + 2n − 1

≤ 2(n log n) + 2n − 1
= 2n log n + 2n log 2− 1
≤ 2n(log n + log 2)
= 2n log 2n
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Solving the Fibonacci Relation

We will study two techniques for solving the Fibonacci relation.

1. One uses the characteristic equation
2. The other uses generating functions

These techniques may be generalized to handle recurrence
relations of the form

F (n) = b1F (n − 1) + b2F (n − 2) + · · ·+ bkF (n − k)

for a constant k .
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Using the Characteristic Equation

F (n) nearly doubles every time and should be an exponential
function.

But what is the base of the exponential function?

The base a should satisfy an = an−1 + an−2, which implies
a2 = a + 1 (called the characteristic equation).

There are two solutions to the characteristic equation:
a1 = 1+

√
5

2
and a2 = 1−

√
5

2
.

Any linear combination of an1 and an2 solves the recurrence
relation.
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Using the Characteristic Equation (cont.)

So, the general solution is

c1(
1 +
√

5

2
)n + c2(

1−
√

5

2
)n.

To fit the values of F (1) and F (2), c1 and c2 must satisfy

c1(1+
√
5

2
) + c2(1−

√
5

2
) = 1

c1(1+
√
5

2
)2 + c2(1−

√
5

2
)2 = 1

Therefore, c1 = 1√
5

and c2 = − 1√
5
, and the exact solution to the

Fibonacci relation is

F (n) =
1√
5

(
1 +
√

5

2
)n − 1√

5
(

1−
√

5

2
)n.
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Using Generating Functions

Generating functions provide a systematic, effective means for
representing and manipulating infinite sequences (of numbers).

We use them here to derive a closed-form representation of the
Fibonacci numbers.

Below are two basic generating functions:

gen. power series generated sequence

func.

1
1−z 1 + z + z2 + · · ·+ zn + · · · 1, 1, 1, · · · , 1, · · ·
c

1−az c + caz + ca2z2 + · · ·+ canzn + · · · c , ca, ca2, · · · , can, · · ·

The second one is a generalization of the first and will be used
in our solution.
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Using Generating Functions (cont.)

Let G (z) = 0 + F1z + F2z
2 + F3z

3 + · · ·+ Fnz
n + · · · (a generating

function for the Fibonacci numbers; F (n) is written as Fn here).

G (z) = F1z + F2z
2 + F3z

3 + · · ·+ Fnz
n + Fn+1z

n+1 + · · ·
zG (z) = F1z

2 + F2z
3 + · · ·+ Fn−1z

n + Fnz
n+1 + · · ·

z2G (z) = F1z
3 + F2z

4 + · · ·+ Fn−2z
n + Fn−1z

n+1 + · · ·
(1− z − z2)G (z) = z

G (z) = z
1−z−z2 (= z

(1− 1+
√
5

2
z)(1− 1−

√
5

2
z)

)

=
1√
5

1− 1+
√
5

2
z

+
− 1√

5

1− 1−
√
5

2
z

Therefore, Fn = 1√
5
(1+
√
5

2
)n − 1√

5
(1−
√
5

2
)n.
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Divide and Conquer Relations

The running time T (n) of a divide-and-conquer algorithm
satisfies

T (n) = aT (n/b) + O(nk)

where

a is the number of subproblems,
n/b is the size of each subproblem, and
O(nk) is the time spent on dividing the problem and combining
the solutions.
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Divide and Conquer Relations (cont.)

Assume, for simplicity, n = bm ( n
bm

= 1, n
bm−1 = b, etc.).

T (n) = aT (n
b

) + O(nk)
= a(aT ( n

b2
) + O((n

b
)k)) + O(nk)

= a(a(aT ( n
b3

) + O(( n
b2

)k)) + O((n
b

)k)) + O(nk)
· · ·
= a(a(· · · (aT ( n

bm
) + O(( n

bm−1 )k)) + · · · ) + O((n
b

)k)) + O(nk)

Assuming T (1) = O(1) (and recalling n = bm, i.e., m = logb n),

T (n) = am × O(1) +
m∑
i=1

am−iO(bik) = O(am) + am
m∑
i=1

O((
bk

a
)i).
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Divide and Conquer Relations (cont.)

As m = logb n and am = alogb n = nlogb a,

T (n) = O(nlogb a) + O(nlogb a)× O(

logb n∑
i=1

(
bk

a
)i).

O(nlogb a) is the accumulative time for computing all the
subproblems.

O(nlogb a)×O(
∑logb n

i=1 (bk

a
)i) is the accumulative time for dividing

problems and combining solutions.

Three cases to consider: bk

a
< 1, bk

a
= 1, and bk

a
> 1.
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Divide and Conquer Relations (cont.)

Theorem (3.4)

The solution of the recurrence relation T (n) = aT (n/b) + O(nk),
where a and b are integer constants, a ≥ 1, b ≥ 2, and k is a
non-negative real constant, is

T (n) =


O(nlogb a) if a > bk

O(nk log n) if a = bk

O(nk) if a < bk

This theorem may be slightly generalized by replacing O(nk) with
some f (n), but the current form is sufficient for the cases we will
encounter. Due to its generality and usefulness, the theorem has
conventionally been referred to as “the master theorem”.
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Recurrent Relations with Full History

Example One:

T (n) = c +
n−1∑
i=1

T (i),

where c is a constant and T (1) is given separately.

T (n)−T (n−1) = (c+
∑n−1

i=1 T (i))−(c+
∑n−2

i=1 T (i)) = T (n−1);
hence, T (n) = 2T (n − 1). (This holds only for n ≥ 3.)

So, we get {
T (2) = c + T (1)

T (n) = 2T (n − 1) if n ≥ 3

which is easier to solve.

T (n + 1) = (c + T (1))2n−1, for n ≥ 2.
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Recurrent Relations with Full History (cont.)
Example Two:

T (n) = n − 1 +
2

n

n−1∑
i=1

T (i), (for n ≥ 2).T (1) = 0.

Multiply both sides of the equation with n for T (n) and (n + 1)
for T (n + 1).

nT (n) = n(n − 1) + 2
∑n−1

i=1 T (i)

(n + 1)T (n + 1) = (n + 1)n + 2
∑n

i=1 T (i)

Take the difference.

(n+1)T (n+1)−nT (n) = (n+1)n−n(n−1)+2T (n) = 2n+2T (n)

which implies

T (n + 1) =
n + 2

n + 1
T (n) +

2n

n + 1
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Recurrent Relations with Full History (cont.)

Further simplification.

T (n + 1) ≤ n + 2

n + 1
T (n) + 2

Expanding and canceling.

T (n)

≤ 2 + n+1
n

(2 + n
n−1(2 + n−1

n−2(· · · (2 + 4
3
T (2)) · · · )))

≤ 2(1 + n+1
n

+ n+1
n

n
n−1 + n+1

n
n

n−1
n−1
n−2 + · · ·+ (n+1

n
n

n−1 · · ·
4
3
))

≤ 2(n + 1)( 1
n+1

+ 1
n

+ 1
n−1 + · · ·+ 1

3
)

≤ 2 + 2(n + 1)( 1
n

+ 1
n−1 + · · ·+ 1)

= O(n log n)

(Note: T (1) = 0 and T (2) ≤ 2 + 3
2
T (1) = 2)
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Useful Facts

Bounding a summation by an integral:
If f (x) is monotonically increasing, then

n∑
i=1

f (i) ≤
∫ n+1

1

f (x)dx .

If f (x) is monotonically decreasing, then

n∑
i=1

f (i) ≤ f (1) +

∫ n

1

f (x)dx .

Stirling’s approximation

n! =
√

2πn
(n
e

)n
(1 + O(1/n)).
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Bounding a Summation by an Integral

x

f (x)

0 1 2 3 n−1 n n+1

...

n∑
i=1

f (i) ≤
∫ n+1

1

f (x)dx .
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Useful Facts (cont.)

Harmonic series

Hn =
n∑

k=1

1

k
= ln n + γ + O(1/n),

where γ = 0.577 . . . is Euler’s constant. So, Hn = O(log n).

Sum of logarithms∑n
i=1blog2 ic = (n + 1)blog2 nc − 2blog2 nc+1 + 2

= Θ(n log n).
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