

String Processing (Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

String Processing

Algorithms 2021 1 / 18

3

イロト イポト イヨト イヨト

Data Compression

Problem

Given a text (a sequence of characters), find an encoding for the characters that satisfies the prefix constraint and that minimizes the total number of bits needed to encode the text.

The *prefix constraint* states that the prefixes of an encoding of one character must not be equal to a complete encoding of another character.

Denote the characters by c_1, c_2, \dots, c_n and their frequencies by f_1 , f_2, \dots, f_n . Given an encoding E in which a bit string s_i represents c_i , the length (number of bits) of the text encoded by using E is $\sum_{i=1}^{n} |s_i| \cdot f_i$.

A Code Tree

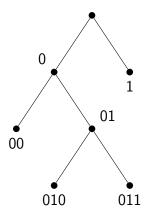


Figure: The tree representation of encoding.

Source: redrawn from [Manber 1989, Figure 6.17].

Yih-Kuen Tsay (IM.NTU)

String Processing

Algorithms 2021 3 / 18

3

(日) (同) (三) (三)

A Huffman Tree

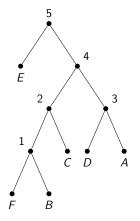


Figure: The Huffman tree for a text with frequencies of A: 5, B: 2, C: 3, D: 4, E: 10, F:1. The code of B, for example, is 1001. The numbers labeling the internal nodes indicate the order in which the corresponding subtrees are formed. Source: redrawn from [Manber 1989, Figure 6.19].

Yih-Kuen Tsay (IM.NTU)

String Processing

A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Huffman Encoding

Algorithm Huffman_Encoding (S, f); insert all characters into a heap H according to their frequencies; while *H* not empty **do** if H contains only one character X then make X the root of T else delete X and Y with lowest frequencies; from H: create Z with a frequency equal to the sum of the frequencies of X and Y; insert Z into H: make X and Y children of Z in T

Yih-Kuen Tsay (IM.NTU)

String Processing

Algorithms 2021 5 / 18

(日) (周) (三) (三)

Huffman Encoding

Algorithm Huffman_Encoding (S, f); insert all characters into a heap H according to their frequencies; while *H* not empty **do** if H contains only one character X then make X the root of T else delete X and Y with lowest frequencies; from H: create Z with a frequency equal to the sum of the frequencies of X and Y; insert Z into H: make X and Y children of Z in T

What is its time complexity?

Yih-Kuen Tsay (IM.NTU)

◆ 豊 ト イ 豊 ト 単 一 つ へ ペ Algorithms 2021 5 / 18

(日) (同) (三) (三)

Huffman Encoding

Algorithm Huffman_Encoding (S, f); insert all characters into a heap H according to their frequencies; while *H* not empty **do** if H contains only one character X then make X the root of T else delete X and Y with lowest frequencies; from H: create Z with a frequency equal to the sum of the frequencies of X and Y; insert Z into H: make X and Y children of Z in T

What is its time complexity? $O(n \log n)$

Yih-Kuen Tsay (IM.NTU)

String Processing

Algorithms 2021 5 / 18

(日) (同) (三) (三)

String Matching

Problem

Given two strings $A (= a_1 a_2 \cdots a_n)$ and $B (= b_1 b_2 \cdots b_m)$, find the first occurrence (if any) of B in A. In other words, find the smallest k such that, for all $i, 1 \le i \le m$, we have $a_{k-1+i} = b_i$.

A (non-empty) substring of a string A is a consecutive sequence of characters $a_i a_{i+1} \cdots a_j$ ($i \leq j$) from A.

イロト イポト イヨト イヨト 二日

Straightforward String Matching

A = x v x v x v x v x v x v x v x v x x x x, B = x v x v x v x v x x x x x x1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 x $v \times x y$ x y x V V x y x y x y V х V х v х х $1 \cdot x$ v х 2: x 3: x $y \cdot \cdot$ 4: x y x y y · . 5: х 6: x x y X Y X Xy y х y 7: x 8: х $y x \cdot \cdot$ 9: x 10: х 11:х ухуу... 12: x 13: x y x y x x x V X V V

Figure: An example of a straightforward string matching.

Source: redrawn from [Manber 1989, Figure 6.20].

Yih-Kuen Tsay (IM.NTU)

String Processing

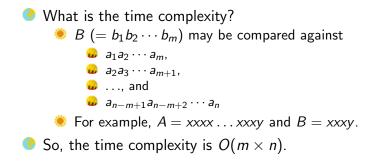
Algorithms 2021 7 / 18

3

What is the time complexity?

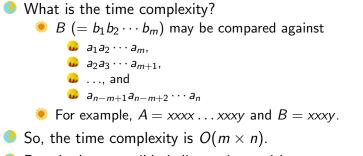
< ロ > < 同 > < 三 > < 三





E SQA

イロト イポト イヨト イヨト



😚 But the best possible is linear-time, with a preprocessing.

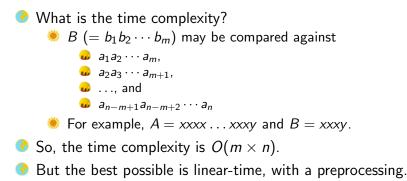
Yih-Kuen Tsay (IM.NTU)

String Processing

Algorithms 2021 8 / 18

= ~~~

イロト 不得下 イヨト イヨト

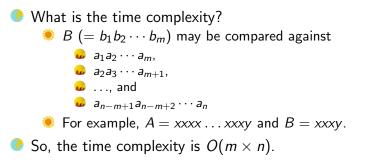


The cause of deficiency: tries from 7 to 12 in the example are doomed to fail. Why?

Yih-Kuen Tsay (IM.NTU)

String Processing

Algorithms 2021 8 / 18



- 😚 But the best possible is linear-time, with a preprocessing.
- The cause of deficiency: tries from 7 to 12 in the example are doomed to fail. Why?
- How can we avoid the futile tries?

In the example, when the ongoing matching fails at b_{11} against a_{16} , we know that $b_1b_2 \dots b_{10}$ equals $a_6a_7 \dots a_{15}$.

- 3

(日) (周) (三) (三)

- In the example, when the ongoing matching fails at b_{11} against a_{16} , we know that $b_1b_2 \dots b_{10}$ equals $a_6a_7 \dots a_{15}$.
- The next possible substring of A that equals B must start at a_{13} , because $a_{13}a_{14}a_{15}$ is the longest suffix of $a_6a_7 \ldots a_{15}$ that equals a prefix of $b_1b_2 \ldots b_{10}$, namely $b_1b_2b_3$.

- In the example, when the ongoing matching fails at b_{11} against a_{16} , we know that $b_1b_2 \dots b_{10}$ equals $a_6a_7 \dots a_{15}$.
- The next possible substring of A that equals B must start at a_{13} , because $a_{13}a_{14}a_{15}$ is the longest suffix of $a_6a_7 \ldots a_{15}$ that equals a prefix of $b_1b_2 \ldots b_{10}$, namely $b_1b_2b_3$.
- We can tell this by just looking at B, as $a_{13}a_{14}a_{15}$ equals $b_8b_9b_{10}$.

(日) (周) (三) (三)

Algorithms 2021 9 / 18

- In the example, when the ongoing matching fails at b_{11} against a_{16} , we know that $b_1 b_2 \dots b_{10}$ equals $a_6 a_7 \dots a_{15}$.
- The next possible substring of A that equals B must start at a_{13} , because $a_{13}a_{14}a_{15}$ is the longest suffix of $a_6a_7 \ldots a_{15}$ that equals a prefix of $b_1b_2 \ldots b_{10}$, namely $b_1b_2b_3$.
- We can tell this by just looking at B, as $a_{13}a_{14}a_{15}$ equals $b_8b_9b_{10}$.

Figure: Matching the pattern against itself.

Source: redrawn from [Manber 1989, Figure 6.21]. Yih-Kuen Tsay (IM.NTU) String Processing

The Values of next

Figure: The values of *next*.

Source: redrawn from [Manber 1989, Figure 6.22].

The value of next[j] tells the length of the longest proper prefix that is equal to a suffix of $b_1b_2 \dots b_{j-1}$.

The Values of next

Figure: The values of *next*.

Source: redrawn from [Manber 1989, Figure 6.22].

The value of next[j] tells the length of the longest proper prefix that is equal to a suffix of $b_1b_2 \dots b_{j-1}$.

If the ongoing matching fails at b_j against a_i , then $b_{next[j]+1}$ is the next to try against a_i .

Note: next[1] is set to -1 so that this unique case is easily differentiated (see the main loop of the KMP algorithm).

The KMP Algorithm

Algorithm String_Match (A, n, B, m); **begin**

$$j := 1; i := 1;$$

 $Start := 0;$
while $Start = 0$ and $i \le n$ do
if $B[j] = A[i]$ then
 $j := j + 1; i := i + 1$
else
 $j := next[j] + 1;$
if $j = 0$ then
 $j := 1; i := i + 1;$
if $j = m + 1$ then $Start := i - m$
end

Yih-Kuen Tsay (IM.NTU)

Algorithms 2021 11 / 18

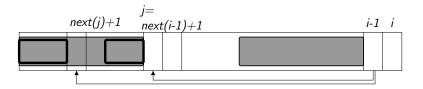


Figure: Computing next(i).

Source: redrawn from [Manber 1989, Figure 6.24].

Yih-Kuen Tsay (IM.NTU)

String Processing

Algorithms 2021 12 / 18

3

イロト イポト イヨト イヨト

Algorithm Compute_Next (B, m); begin

$$next[1] := -1; next[2] := 0;$$

for $i := 3$ to m do
 $j := next[i - 1] + 1;$
while $B[i - 1] \neq B[j]$ and $j > 0$ do
 $j := next[j] + 1;$
 $next[i] := j$
nd

e

イロト 不得下 イヨト イヨト 二日

What is its time complexity?

Yih-Kuen Tsay (IM.NTU)

String Processing

Algorithms 2021 14 / 18

- 31

(日) (周) (日) (日)

What is its time complexity?

Because of backtracking, *a*; may be compared against

- 3

(日) (周) (三) (三)

- What is its time complexity?
 - Because of backtracking, ai may be compared against

However, for these to happen, each of a_{i-j+2}, a_{i-j+3},..., a_{i-1} was compared against the corresponding character in b₁b₂...b_{j-1} just once.

- What is its time complexity?
 - Because of backtracking, ai may be compared against

$$egin{array}{ccc} b_j, \ b_{j-1}, \ b_{2} & \dots, \ and \ b_2 \end{array}$$

However, for these to happen, each of $a_{i-j+2}, a_{i-j+3}, \ldots, a_{i-1}$ was compared against the corresponding character in $b_1b_2 \ldots b_{j-1}$ just once.

We may re-assign the costs of comparing a_i against $b_{j-1}, b_{j-2}, \ldots, b_2$ to those of comparing $a_{i-j+2}a_{i-j+3} \ldots a_{i-1}$ against $b_1b_2 \ldots b_{j-1}$.

- What is its time complexity?
 - Because of backtracking, ai may be compared against

$$egin{array}{ccc} b_j, \ b_{j-1}, \ b_{2} & \dots, \ and \ b_2 \end{array}$$

However, for these to happen, each of a_{i-j+2}, a_{i-j+3},..., a_{i-1} was compared against the corresponding character in b₁b₂...b_{j-1} just once.

- We may re-assign the costs of comparing a_i against b_{j-1}, b_{j-2},..., b₂ to those of comparing a_{i-j+2}a_{i-j+3}...a_{i-1} against b₁b₂...b_{j-1}.
- Every a_i is incurred the cost of at most two comparisons.
- So, the time complexity is O(n).

イロト イポト イヨト イヨト 二日

String Editing

Problem

Given two strings $A (= a_1 a_2 \cdots a_n)$ and $B (= b_1 b_2 \cdots b_m)$, find the minimum number of changes required to change A character by character such that it becomes equal to B.

Three types of changes (or edit steps) allowed: (1) insert, (2) delete, and (3) replace.

Let C(i, j) denote the minimum cost of changing A(i) to B(j), where $A(i) = a_1 a_2 \cdots a_i$ and $B(j) = b_1 b_2 \cdots b_j$.

For
$$i = 0$$
 or $j = 0$,
 $C(i, 0) = i$
 $C(0, j) = j$

For i > 0 and j > 0,

$$C(i,j) = \min \left\{ egin{array}{ccc} C(i-1,j)+1 & (ext{deleting } a_i) \ C(i,j-1)+1 & (ext{inserting } b_j) \ C(i-1,j-1)+1 & (a_i o b_j) \ C(i-1,j-1) & (a_i = b_j) \end{array}
ight.$$

Yih-Kuen Tsay (IM.NTU)

String Processing

Algorithms 2021 16 / 18

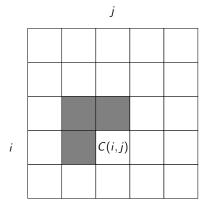


Figure: The dependencies of C(i, j).

Source: redrawn from [Manber 1989, Figure 6.26].

Yih-Kuen Tsay (IM.NTU)

String Processing

Algorithms 2021 17 / 18

3

Algorithm Minimum_Edit_Distance (A, n, B, m); for i := 0 to n do C[i, 0] := i; for i := 1 to m do C[0, j] := j; for i = 1 to n do for i := 1 to m do x := C[i-1, j] + 1;y := C[i, i-1] + 1;if $a_i = b_i$ then z := C[i-1, j-1]else z := C[i-1, i-1] + 1;C[i, j] := min(x, y, z)

Yih-Kuen Tsay (IM.NTU)

Algorithms 2021 18 / 18

Algorithm Minimum_Edit_Distance (A, n, B, m); for i := 0 to n do C[i, 0] := i; for i := 1 to m do C[0, j] := j; for i := 1 to n do for i := 1 to m do x := C[i-1, j] + 1;y := C[i, i-1] + 1;if $a_i = b_i$ then z := C[i-1, j-1]else z := C[i-1, j-1] + 1;C[i, j] := min(x, y, z)

Its time complexity is clearly O(mn).

Yih-Kuen Tsay (IM.NTU)

String Processing

Algorithms 2021 18 / 18