
Algorithms [Compiled on December 15, 2022] Fall 2021

Suggested Solutions to Final Problems
(draft, to be revised)

1. The next table is a precomputed table (for B = b1b2 · · · bm) that plays a critical role in the
KMP algorithm. Under what condition regarding b1b2 · · · bi, 2 ≤ i ≤ m, will next [i] get
a 0 in the preprocessing? And under what condition can it be safely set to −1 (without
missing a potential match when searching for B in another input string)?

Solution. The value of next [i] is determined by the length of the longest proper prefix of
b1b2 · · · bi−1 that is also a proper suffix of b1b2 · · · bi−1. When no such prefix exists, next [i]
gets a 0.

During a search for string B in string A using KMP, when bj is compared against ai
and the comparison fails, bnext [j]+1 is tried next against ai. When next [j] = 0, it is b1
that is compared with ai. If the comparison fails, then b1 will be compared against ai+1,
according to the case for next [j]+1 = 0, i.e., next [j] = −1. When b1 = bj , the comparison
between b1 and ai is doomed to fail (since b1 = bj 6= ai) and the comparison could have
been saved. To achieve the saving, we can set next [j] to −1 (instead of 0) when bj happens
to be equal to b1. 2

2. Design an algorithm for finding an Eulerian circuit in an undirected graph. Please present
your algorithm in adequate pseudocode and make assumptions wherever necessary. Ex-
plain why your algorithm is correct and give an analysis of its time complexity. The
more efficient your algorithm is, the more points you will be credited for this problem.
(Hint: the discovery of a cycle and that of the Eulerian circuits in individual connected
components with the cycle removed, in the induction step, can be interweaved.)

Solution. To be completed; for now, see solutions from previous TA sessions. 2

3. Design an algorithm that, given a weighted directed graph, detects the existence of a
negative-weight cycle (the sum of the weights of its edges is negative). Please present your
algorithm in adequate pseudocode and make assumptions wherever necessary. Explain
why your algorithm is correct and give an analysis of its time complexity. The more
efficient your algorithm is, the more points you will be credited for this problem.

Solution. Floyd’s algorithm for all-pair shortest paths can be easily adapted for detecting
the existence of a negative-weight cycle.

Algorithm Detect Negative Weight Cycle(W);
begin
{initialization}
for i := 1 to n do

W [i, i] := 0;
for j := 1 to n do

if (i, j) ∈ E then
W [i, j] := length(i, j);
if i = j and W [i, j] < 0 then

Print “A negative-weight cycle detected.”; Stop
else W [i, j] := ∞;

1

for m := 1 to n do {the induction sequence}
for x := 1 to n do

for y := 1 to n do
if W [x,m] + W [m, y] < W [x, y] then

W [x, y] := W [x,m] + W [m, y];
if x = y and W [x, y] < 0 then

Print “A negative-weight cycle detected.”; Stop
end

Suppose a negative-weight cycle exists, looping around vertex v, in the input graph. If
it is a self-loop on v, then it will be detected during the initialization stage. Otherwise,
the cycle must be the concatenation of a (< k)-path from v to k and a (< k)-path from k
to v, from some k ≤ n. It will be detected immediately after W [v, k] + W [k, v] has been
computed for the iteration of m = k and W [v, v] updated to reflect the current best value
(if not happening earlier).

The time complexity of the detection algorithm is clearly O(n3). 2

4. Let G = (V,E) be a connected weighted undirected graph and T be a minimum-cost
spanning tree (MCST) of G. Suppose that the cost of one edge {u, v} in G is updated ;
{u, v} may or may not belong to T . Prove that T is still an MCST of G under any of the
following two conditions:

(a) {u, v} belongs to T and its cost decreases or

(b) {u, v} does not belong to T and its cost increases.

You may assume that the costs of all edges are distinct before and after the cost update
to {u, v}.

Solution. Claim: for each of those edges not in an MCST, the edge must have the highest
cost among the edges in the cycle created if it is inserted into the MCST. This claim can
be easily proven by contradiction.

Part (4a): with its original weight, {u, v} is part of the minimum-cost spanning tree T .
The preceding claim does not change for T when the cost of {u, v} decreases. So, T is
still an MCST.

Part (4b): with its original weight, {u, v} is not part of the minimum-cost spanning tree
T . Therefore, {u, v} has the highest cost among the edges in the cycle created if it is
inserted into T . This remains unchanged when the cost of {u, v} increases, and hence T
is still an MCST. 2

5. The most common approach to finding an augmenting path (if one exists) in a network
with some given flow is breadth-first search (BFS). Please present such an algorithm in
suitable pseudocode.

Solution.

Algorithm Augmenting Path(G, s, t, c, f);
begin

put s in Queue;
while Queue is not empty do

2

remove vertex u from Queue;
if u = t then

Print the path (by backtracking the parent values) and stop.
if u is unmarked then

mark u;
for all edges (u, v) with v.parent undefined do

if f(u, v) < c(u, v) or f(v, u) > 0 then
v.parent := u;
put v in Queue

Print “No augmenting path found.”
end

2

6. Below is an algorithm, based on the dynamic programming approach, for solving the
single-source shortest path problem.

Algorithm Single Source Shortest Paths(length);
begin

D[v] := 0;
for all u 6= v do

if (v, u) ∈ E then
D[u] := length(v, u)

else D[u] := ∞;
for l := 2 to n− 1 do

for all u 6= v do
for all u′ such (u′, u) ∈ E do

if D[u′] + length[u′, u] < D[u] then
D[u] := D[u′] + length[u′, u]

end

Denote by Dl(u) the length of a shortest path from v (the source) to u containing at
most l edges; particularly, Dn−1(u) is the length of a shortest path from v to u (with no
restrictions).

In the for loop with index l iterating from 2 to n− 1, it is possible that, for certain l = k,
D[u] acquires the value of Dk′(u), where k < k′. Why? Please explain with an example.

Solution. Consider the following input graph.

v a

b

c

1

2

1
5

Suppose, in the loop “for all u 6= v do”, a, b, and c are processed in this order. When l = 2,
after D[b] gets updated (since D[a] + length[a, b] <∞) as D2(b), it becomes immediately
available for computing D[c] in the next iteration of “for all u 6= v do”. What we get for
D[c] (from D[b] + length[b, c]) in that iteration is actually D3(c), while l is still 2. 2

3

7. Consider designing an algorithm by dynamic programming to determine the length of a
longest common subsequence of two strings (sequences of letters). For example, “abbcc”
is a longest common subsequence of “abcabcabc” and “aaabbbccc”, and so is “abccc”.

(a) Formulate the solution using recurrence relations.

Solution. Let LCS (i, j) denote the length of a longest common subsequence of A[1..i]
and B[1..j], where A[1..i] = a1a2 · · · ai and B[1..j] = b1b2 · · · bj .
For i = 0 or j = 0,

LCS (0, j) = 0
LCS (i, 0) = 0

For i > 0 and j > 0,

LCS (i, j) = max

{
LCS (i− 1, j − 1) + 1 if ai = bj
max(LCS (i− 1, j),LCS (i, j − 1)) otherwise

2

(b) Present the algorithm in suitable pseudocode, based on the previous recursive for-
mulation. What is the time complexity of your algorithm?

Solution.

Algorithm Longest Common Subsequence (A,n,B,m);
for i := 0 to n do LCS [i, 0] := 0;
for j := 1 to m do LCS [0, j] := 0;
for i := 1 to n do

for j := 1 to m do
if ai = bj then

x := LCS [i− 1, j − 1] + 1
y := LCS [i− 1, j];
z := LCS [i, j − 1];
LCS [i, j] := max(x,max(y, z))

The time complexity is clearly O(mn). 2

8. Every problem in P is polynomially reducible to any other non-trivial problem in P. Why?
Please explain. (Note: a decision problem is non-trivial if there exists an input such that
the answer is yes and there also exists an input such that the answer is no. In other words,
a decision problem is non-trivial if its corresponding language is neither the universe nor
the empty set.)

Solution. Let A be an arbitrary problem in P with UA as the set of all possible inputs
and LA ⊆ UA be the corresponding language. Let B be a nontrivial problem in P with
UB as the set of all possible inputs and LB ⊆ UB be the corresponding language. LB is
neither the universe UB nor the empty set. So, there is a u2 ∈ UB such that u2 ∈ LB and
there is a u′2 ∈ UB such that u′2 6∈ LB.

To establish that LA is polynomially reducible to LB, we argue for the existence of a
polynomial-time deterministic algorithm AC (mapping from UA to UB) such that for
every u1 ∈ UA, u1 ∈ LA if and only if AC(u1) ∈ LB.

The algorithm AC works as follows. For any input u1 ∈ UA, if u1 ∈ LA, which can be
checked by a deterministic algorithm in polynomial time (since A is in P), then we map
u1 to u2; otherwise, we map u1 to u′2. Clearly, u1 ∈ LA if and only if AC(u1) ∈ LB. 2

4

9. In the proof (discussed in class) of the NP-hardness of the 3SAT problem by reduction
from the SAT problem, we convert an arbitrary Boolean expression in CNF (input of
the SAT problem) to a Boolean expression in 3CNF (where each clause has exactly three
literals).

(a) Please illustrate the conversion by giving the Boolean expression that will be obtained
from the following Boolean expression:

(w + y) · (v + w + x + y + z) · (w + x + y + z).

Solution.
(w + y + x1) · (w + y + x1)
(v + w + y1) · (y1 + x + y2) · (y2 + y + z)
(w + x + z1) · (z1 + y + z)

The three rows correspond respectively to the first, the second, and the third clauses
of the original expression. 2

(b) The original Boolean expression is satisfiable. As a demonstration of why the reduc-
tion is correct, please use the resulting Boolean expression to show that it is indeed
the case.

Solution. We show that the resulting Boolean expression is satisfiable and any satisfying
assignment for it induces one for the original expression.

Let v = 1, w = 1, x = 1, y = 1, z = 0, x1 = 0, y1 = 0, y2 = 0, z1 = 0. This is a satisfying
assignment for the resulting expression. The part of the assignment for v, w, x, y, z is also
a satisfying assignment for the original expression.

In general, for the first row of the resulting expression, the satisfying assignment must
make w + y equal to 1, as x1 and x1 cannot both be 1, and hence the assignment also
makes the corresponding clause (w + y) in the original expression equal to 1, For the
second row of the resulting expression, the satisfying assignment must make one of v +w,
x, and y + z equal to 1, as y1, y1 + y2, and y2 cannot all be 1. The assignment therefore
makes the corresponding clause (v + w + x + y + z) in the original expression equal to 1.
Analogously, for the third row. 2

10. Solve one of the following two problems. (Note: if you try to solve both problems, I will
randomly pick one of them to grade.)

(a) The independent set problem is as follows.

An independent set in an undirected graph is a set of vertices no two of
which are adjacent. The problem is to determine, given a graph G and an
integer k, whether G contains an independent set with ≥ k vertices.

Prove that the independent set problem is NP-complete.

Solution. The problem is in NP, as we can guess and select a set of vertices (by
nondeterministically choosing, for each vertex, to be in or not in the selection) and
check in polynomial time whether the selected set is of size ≥ k and is indeed an
independent set of the given graph G.

To prove that it is NP-hard, we demonstrate a polynomial-time reduction from the
clique problem, which is known to be NP-hard. An input (G1 = (V1, E1), k1), which
is a pair of a graph and an integer, to the clique problem can be converted to an

5

input (G2 = (V2, E2), k2) to the independent set problem in the following manner:
To obtain G2, we simply take the complement of G1, i.e., V2 = V1 and E2 = {{u, v} |
u, v ∈ V2 and {u, v} 6∈ E1}. And, we take k2 simply to be k1. This conversion
apparently can be done by a deterministic algorithm in polynomial time. We need
to show that G1 has a clique of size ≥ k1 if and only if G2 has an independent set of
size ≥ k2 (= k1).

The “only if” part: suppose G1 has a clique C ⊆ V1 of size ≥ k1. C is also a subset
of V2 and |C| ≥ k1 = k2. We claim that C is also an independent set of G2. This is
so, as every pair {u, v} of vertices in C are adjacent (i.e., directly connected by an
edge) in G1 and thus become non-adjacent in G2, which is the complement of G1.

The “if” part: suppose G2 has an independent set D of size ≥ k2. D is a subset of
V1 and |D| ≥ k2 = k1. We claim that D is also a clique of G1. This is so, as every
pair {u, v} of vertices in D are non-adjacent in G2, which is the complement of G1,
and therefore are adjacent (i.e., directly connected by an edge) in G1. 2

(b) The subset sum problem (a variant of the knapsack problem) is as follows.

The input is a multiset of numbers {a1, a2, · · · , an} and another number k.
The problem is to determine whether the multiset contains a subset such
that the sum of numbers in the subset is exactly k.

Prove that the subset sum problem is NP-complete.

Solution. The problem is in NP, as we can guess and select a set of numbers (by
nondeterministically choosing, for each number, to be in or not in the selection) from
the input multiset and check in polynomial time whether the sum of the numbers in
the selected set is exactly k.

To prove that it is NP-hard, we demonstrate a polynomial-time reduction from the
partition problem, which is known to be NP-hard. An input set X = {x1, x2, · · · , xn}
of items with an associated function s (assigning a size to each item) to the partition
problem can be converted to an input (S, k), where S is a multiset of numbers
and k is a number, to the subset sum problem, by taking S to be {s(xi) | xi ∈
X, for 1 ≤ i ≤ n} and k to be 1

2Σi=n
i=1s(xi). This conversion apparently can be done

by a deterministic algorithm in polynomial time. We need to show that X can be
evenly partitioned, i.e., partitioned into two subsets of the same total size, if and
only if S has a subset whose numbers sum to exactly k.

The “only if” part: suppose X can be evenly partitioned and X1, X2 ⊆ X are the
two subsets of the same total size. Then, obviously the multiset {s(x) | x ∈ X1} is a
subset of S whose numbers sum to exactly 1

2Σi=n
i=1s(xi).

The “if” part: suppose S has a subset S′ whose numbers sum to exactly k =
1
2Σi=n

i=1s(xi) and hence the remaining numbers of S also sum to exactly the same
amount. Let X ′ be the set of items whose sizes correspond to the numbers in S′.
Then, X ′ and X \X ′ form a partition of X and are of the same total size. 2

Appendix

• The KMP algorithm (assuming next):

Algorithm String Match (A,n,B,m);
begin

j := 1; i := 1;
Start := 0;
while Start = 0 and i ≤ n do

6

if B[j] = A[i] then
j := j + 1; i := i+ 1

else
j := next[j] + 1;
if j = 0 then

j := 1; i := i+ 1;
if j = m+ 1 then Start := i−m

end

• Below is a theorem useful for discovering an MCST of a connected weighted undirected
graph G = (V,E):

Let V1 and V2 be a partition of V and E(V1, V2) be the set of edges connecting nodes in
V1 to nodes in V2. An edge with the minimum weight in E(V1, V2) must be in an MCST
of the given G.

• We say that problem/language L1 is polynomially reducible to problem/language L2 if
there exists a conversion algorithm AC satisfying the following conditions:

1. AC runs in polynomial time (deterministically).

2. u1 ∈ L1 if and only if AC(u1) = u2 ∈ L2.

• The clique problem: given an undirected graph G = (V,E) and an integer k, determine
whether G contains a clique of size ≥ k. (A clique of G is a subgraph C of G such that
every vertex in C is adjacent to all other vertices in C.)

The clique problem is NP-complete.

• The partition problem: given a set X where each element x ∈ X has an associated size
s(x), is it possible to partition the set into two subsets with exactly the same total size?

The partition problem is NP-complete.

7

