
Algorithms 2022: Data Structures

A Supplement (Based on [Manber 1989])

Yih-Kuen Tsay

September 30, 2022

1 Heaps

Heaps

• A (max binary) heap is a complete binary tree whose keys satisfy the heap property:

the key of every node is greater than or equal to the key of any of its children.

• It supports the two basic operations of a priority queue:

– Insert(x): insert the key x into the heap.

– Remove(): remove and return the largest key from the heap.

Heaps (cont.)

• A complete binary tree can be represented implicitly by an array A as follows:

1. The root is stored in A[1].

2. The left child of A[i] is stored in A[2i] and the right child is stored in A[2i + 1].

Heaps (cont.)

Algorithm Remove Max from Heap (A,n);
begin

if n = 0 then print “the heap is empty”
else Top of the Heap := A[1];

A[1] := A[n]; n := n− 1;
parent := 1; child := 2;
while child ≤ n− 1 do

if A[child] < A[child+ 1] then
child := child+ 1;

if A[child] > A[parent] then
swap(A[parent], A[child]);
parent := child;
child := 2 ∗ child

else child := n
end

1

Heaps (cont.)

Algorithm Insert to Heap (A,n, x);
begin

n := n + 1;
A[n] := x;
child := n;
parent := n div 2;
while parent ≥ 1 do

if A[parent] < A[child] then
swap(A[parent], A[child]);
child := parent;
parent := parent div 2

else parent := 0
end

2 AVL Trees

AVL Trees

Definition 1. An AVL tree is a binary search tree such that, for every node, the difference between the
heights of its left and right subtrees is at most 1 (the height of an empty tree is defined as 0).

This definition guarantees a maximal height of O(log n) for any AVL tree of n nodes.

/* Let G(h) denote the least possible number of nodes contained in an AVL tree of height h; the empty
tree has height −1 and a single-node tree has height 0. A recurrence relation for G(h) can be defined as
follows: G(−1) = 0

G(0) = 1
G(h) = G(h− 1) + G(h− 2) + 1, h ≥ 1

A precise solution to G(h) may be derived by establishing the relation G(h) = F (h + 3) − 1, where F (i)
is the i-th Fibonacci number (as defined in Chapter 3.5 of Manber’s book) for which we already know the
closed form; the proof is quite simple by induction. So, for any AVL tree with n nodes and of height h,
n ≥ G(h) ≥ F (h+ 3)− 1 ≥ cah (for some positive constants c and a and sufficiently large n). It follows that
h = O(log n). */

AVL Trees (cont.)

2

A

B

T1 T2

C

T3 T4

new

h + 1

h

h− 1

A

B

T1 T2

C

T3 T4

new

h

h + 1

h− 1

(a) (b)

Figure: Insertions that invalidate the AVL property.
Source: redrawn from [Manber 1989, Figure 4.13].

AVL Trees (cont.)

A

B

T1 T2

C

T3 T4

new

h + 1

h− 1

B

T1

A

T2

C

T3 T4new

h + 1

h− 1

(a) (b)

Figure: A single rotation: (a) before; (b) after.
Source: redrawn from [Manber 1989, Figure 4.14].

AVL Trees (cont.)

A

B

T1

D

T2 T3

T4

new

h h− 1

h

h

D

B

T1

T2

A

T3

T4new

h

h− 1

h

(a) (b)

3

Figure: A double rotation: (a) before; (b) after.
Source: redrawn from [Manber 1989, Figure 4.15].

3 Union-Find

Union-Find

• There are n elements x1, x2, · · · , xn divided into groups. Initially, each element is in a group by itself.

• Two operations on the elements and groups:

– find(A): returns the name of A’s group.

– union(A,B): combines A’s and B’s groups to form a new group with a unique name.

• To tell if two elements are in the same group, one may issue a find operation for each element and see
if the returned names are the same.

Union-Find (cont.)

A nil

C

G D

B nil

F

E nil

Figure: The representation for the union-find problem.
Source: redrawn from [Manber 1989, Figure 4.16].

Balancing

• The root also stores the number of elements in (i.e., the size of) its group.

• To balance the tree resulted from a union operation, let the smaller group join the larger group and
update the size of the larger group accordingly.

Theorem 2 (Theorem 4.2). If balancing is used, then any tree of height h (≥ 0) must contain at least
2h elements.

/* This can be proven by induction on the number n (≥ 1) of elements/nodes. */

• Any sequence of m find or union operations (where m ≥ n) takes O(m log n) steps.

Union-Find (cont.)

4

(a) (b)

Figure: Path compression: (a) before; (b) after.
Source: redrawn from [Manber 1989, Figure 4.17].

Effect of Path Compression

Theorem 3 (Theorem 4.3). If both balancing and path compression are used, any sequence of m find or
union operations (where m ≥ n) takes O(m log∗ n) steps.

The value of log∗ n intuitively equals the number of times that one has to apply log to n to bring its
value down to 1.

Code for Union-Find

Algorithm Union_Find_Init(A,n);

begin

for i := 1 to n do

A[i].parent := nil;

A[i].size := 1

end

Algorithm Find(a);

begin

if A[a].parent <> nil then

A[a].parent := Find(A[a].parent);

Find := A[a].parent;

else

Find := a

end

Code for Union-Find (cont.)

Algorithm Union(a,b);

begin

x := Find(a);

y := Find(b);

if x <> y then

if A[x].size > A[y].size then

A[y].parent := x;

A[x].size := A[x].size + A[y].size;

5

else

A[x].parent := y;

A[y].size := A[y].size + A[x].size

end

6

