
String Processing
(Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 1 / 18

Data Compression

Problem

Given a text (a sequence of characters), find an encoding for the
characters that satisfies the prefix constraint and that minimizes the
total number of bits needed to encode the text.

The prefix constraint states that the prefixes of an encoding of one
character must not be equal to a complete encoding of another
character.

Denote the characters by c1, c2, · · · , cn and their frequencies by f1,
f2, · · · , fn. Given an encoding E in which a bit string si represents ci ,
the length (number of bits) of the text encoded by using E is∑n

i=1 |si | · fi .

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 2 / 18

A Code Tree

0

00

01

010 011

1

Figure: The tree representation of encoding.
Source: redrawn from [Manber 1989, Figure 6.17].

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 3 / 18

A Huffman Tree

5

E

4

2

1

F B

C

3

D A

Figure: The Huffman tree for a text with frequencies of A: 5, B: 2, C: 3, D: 4, E:

10, F:1. The code of B, for example, is 1001. The numbers labeling the internal

nodes indicate the order in which the corresponding subtrees are formed.

Source: redrawn from [Manber 1989, Figure 6.19].

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 4 / 18

Huffman Encoding

Algorithm Huffman Encoding (S , f);
insert all characters into a heap H

according to their frequencies;
while H not empty do

if H contains only one character X then
make X the root of T

else
delete X and Y with lowest frequencies;

from H ;
create Z with a frequency equal to the

sum of the frequencies of X and Y ;
insert Z into H ;
make X and Y children of Z in T

What is its time complexity? O(n log n)

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 5 / 18

Huffman Encoding

Algorithm Huffman Encoding (S , f);
insert all characters into a heap H

according to their frequencies;
while H not empty do

if H contains only one character X then
make X the root of T

else
delete X and Y with lowest frequencies;

from H ;
create Z with a frequency equal to the

sum of the frequencies of X and Y ;
insert Z into H ;
make X and Y children of Z in T

What is its time complexity?

O(n log n)

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 5 / 18

Huffman Encoding

Algorithm Huffman Encoding (S , f);
insert all characters into a heap H

according to their frequencies;
while H not empty do

if H contains only one character X then
make X the root of T

else
delete X and Y with lowest frequencies;

from H ;
create Z with a frequency equal to the

sum of the frequencies of X and Y ;
insert Z into H ;
make X and Y children of Z in T

What is its time complexity? O(n log n)
Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 5 / 18

String Matching

Problem

Given two strings A (= a1a2 · · · an) and B (= b1b2 · · · bm), find the
first occurrence (if any) of B in A. In other words, find the smallest k
such that, for all i , 1 ≤ i ≤ m, we have ak−1+i = bi .

A (non-empty) substring of a string A is a consecutive sequence of
characters aiai+1 · · · aj (i ≤ j) from A.

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 6 / 18

Straightforward String Matching

A = xyxxyxyxyyxyxyxyyxyxyxx . B = xyxyyxyxyxx .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
x y x x y x y x y y x y x y x y y x y x y x x

1 : x y x y · · ·
2 : x · · ·
3 : x y · · ·
4 : x y x y y · · ·
5 : x · · ·
6 : x y x y y x y x y x x
7 : x · · ·
8 : x y x · · ·
9 : x · · ·
10 : x · · ·
11 : x y x y y · · ·
12 : x · · ·
13 : x y x y y x y x y x x

Figure: An example of a straightforward string matching.
Source: redrawn from [Manber 1989, Figure 6.20].

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 7 / 18

Straightforward String Matching (cont.)

What is the time complexity?

B (= b1b2 · · · bm) may be compared against

a1a2 · · · am,
a2a3 · · · am+1,
. . ., and
an−m+1an−m+2 · · · an

For example, A = xxxx . . . xxxy and B = xxxy .

So, the time complexity is O(m × n).

But the best possible is linear-time, with a preprocessing.

The cause of deficiency: tries from 7 to 12 in the example are
doomed to fail. Why?

How can we avoid the futile tries?

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 8 / 18

Straightforward String Matching (cont.)

What is the time complexity?
B (= b1b2 · · · bm) may be compared against

a1a2 · · · am,
a2a3 · · · am+1,
. . ., and
an−m+1an−m+2 · · · an

For example, A = xxxx . . . xxxy and B = xxxy .

So, the time complexity is O(m × n).

But the best possible is linear-time, with a preprocessing.

The cause of deficiency: tries from 7 to 12 in the example are
doomed to fail. Why?

How can we avoid the futile tries?

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 8 / 18

Straightforward String Matching (cont.)

What is the time complexity?
B (= b1b2 · · · bm) may be compared against

a1a2 · · · am,
a2a3 · · · am+1,
. . ., and
an−m+1an−m+2 · · · an

For example, A = xxxx . . . xxxy and B = xxxy .

So, the time complexity is O(m × n).

But the best possible is linear-time, with a preprocessing.

The cause of deficiency: tries from 7 to 12 in the example are
doomed to fail. Why?

How can we avoid the futile tries?

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 8 / 18

Straightforward String Matching (cont.)

What is the time complexity?
B (= b1b2 · · · bm) may be compared against

a1a2 · · · am,
a2a3 · · · am+1,
. . ., and
an−m+1an−m+2 · · · an

For example, A = xxxx . . . xxxy and B = xxxy .

So, the time complexity is O(m × n).

But the best possible is linear-time, with a preprocessing.

The cause of deficiency: tries from 7 to 12 in the example are
doomed to fail. Why?

How can we avoid the futile tries?

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 8 / 18

Straightforward String Matching (cont.)

What is the time complexity?
B (= b1b2 · · · bm) may be compared against

a1a2 · · · am,
a2a3 · · · am+1,
. . ., and
an−m+1an−m+2 · · · an

For example, A = xxxx . . . xxxy and B = xxxy .

So, the time complexity is O(m × n).

But the best possible is linear-time, with a preprocessing.

The cause of deficiency: tries from 7 to 12 in the example are
doomed to fail. Why?

How can we avoid the futile tries?

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 8 / 18

Straightforward String Matching (cont.)

What is the time complexity?
B (= b1b2 · · · bm) may be compared against

a1a2 · · · am,
a2a3 · · · am+1,
. . ., and
an−m+1an−m+2 · · · an

For example, A = xxxx . . . xxxy and B = xxxy .

So, the time complexity is O(m × n).

But the best possible is linear-time, with a preprocessing.

The cause of deficiency: tries from 7 to 12 in the example are
doomed to fail. Why?

How can we avoid the futile tries?

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 8 / 18

Matching the Pattern Against Itself
In the example, when the ongoing matching fails at b11 against
a16, we know that b1b2 . . . b10 equals a6a7 . . . a15.

The next possible substring of A that equals B must start at a13,
because a13a14a15 is the longest suffix of a6a7 . . . a15 that equals
a prefix of b1b2 . . . b10, namely b1b2b3.
We can tell this by just looking at B , as a13a14a15 equals b8b9b10.

B = x y x y y x y x y x x
x · · ·

x y x · · ·
x · · ·

x · · ·
x y x y y

x · · ·
x y x

Figure: Matching the pattern against itself.

Source: redrawn from [Manber 1989, Figure 6.21].

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 9 / 18

Matching the Pattern Against Itself
In the example, when the ongoing matching fails at b11 against
a16, we know that b1b2 . . . b10 equals a6a7 . . . a15.
The next possible substring of A that equals B must start at a13,
because a13a14a15 is the longest suffix of a6a7 . . . a15 that equals
a prefix of b1b2 . . . b10, namely b1b2b3.

We can tell this by just looking at B , as a13a14a15 equals b8b9b10.

B = x y x y y x y x y x x
x · · ·

x y x · · ·
x · · ·

x · · ·
x y x y y

x · · ·
x y x

Figure: Matching the pattern against itself.

Source: redrawn from [Manber 1989, Figure 6.21].

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 9 / 18

Matching the Pattern Against Itself
In the example, when the ongoing matching fails at b11 against
a16, we know that b1b2 . . . b10 equals a6a7 . . . a15.
The next possible substring of A that equals B must start at a13,
because a13a14a15 is the longest suffix of a6a7 . . . a15 that equals
a prefix of b1b2 . . . b10, namely b1b2b3.
We can tell this by just looking at B , as a13a14a15 equals b8b9b10.

B = x y x y y x y x y x x
x · · ·

x y x · · ·
x · · ·

x · · ·
x y x y y

x · · ·
x y x

Figure: Matching the pattern against itself.

Source: redrawn from [Manber 1989, Figure 6.21].

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 9 / 18

Matching the Pattern Against Itself
In the example, when the ongoing matching fails at b11 against
a16, we know that b1b2 . . . b10 equals a6a7 . . . a15.
The next possible substring of A that equals B must start at a13,
because a13a14a15 is the longest suffix of a6a7 . . . a15 that equals
a prefix of b1b2 . . . b10, namely b1b2b3.
We can tell this by just looking at B , as a13a14a15 equals b8b9b10.

B = x y x y y x y x y x x
x · · ·

x y x · · ·
x · · ·

x · · ·
x y x y y

x · · ·
x y x

Figure: Matching the pattern against itself.

Source: redrawn from [Manber 1989, Figure 6.21].
Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 9 / 18

The Values of next

i = 1 2 3 4 5 6 7 8 9 10 11
B = x y x y y x y x y x x
next = −1 0 0 1 2 0 1 2 3 4 3

Figure: The values of next.
Source: redrawn from [Manber 1989, Figure 6.22].

The value of next[j] tells the length of the longest proper prefix that
is equal to a suffix of b1b2 . . . bj−1.

If the ongoing matching fails at bj against ai , then bnext[j]+1 is the
next to try against ai .

Note: next[1] is set to −1 so that this unique case is easily
differentiated (see the main loop of the KMP algorithm).

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 10 / 18

The Values of next

i = 1 2 3 4 5 6 7 8 9 10 11
B = x y x y y x y x y x x
next = −1 0 0 1 2 0 1 2 3 4 3

Figure: The values of next.
Source: redrawn from [Manber 1989, Figure 6.22].

The value of next[j] tells the length of the longest proper prefix that
is equal to a suffix of b1b2 . . . bj−1.

If the ongoing matching fails at bj against ai , then bnext[j]+1 is the
next to try against ai .

Note: next[1] is set to −1 so that this unique case is easily
differentiated (see the main loop of the KMP algorithm).

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 10 / 18

The KMP Algorithm

Algorithm String Match (A, n,B ,m);
begin

j := 1; i := 1;
Start := 0;
while Start = 0 and i ≤ n do

if B[j] = A[i] then
j := j + 1; i := i + 1

else
j := next[j] + 1;
if j = 0 then

j := 1; i := i + 1;
if j = m + 1 then Start := i −m

end

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 11 / 18

The KMP Algorithm (cont.)

next[j] + 1
j =
next[i − 1] + 1 i − 1 i

Figure: Computing next[i].
Source: redrawn from [Manber 1989, Figure 6.24].

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 12 / 18

The KMP Algorithm (cont.)

Algorithm Compute Next (B ,m);
begin

next[1] := −1; next[2] := 0;
for i := 3 to m do

j := next[i − 1] + 1;
while B[i − 1] 6= B[j] and j > 0 do

j := next[j] + 1;
next[i] := j

end

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 13 / 18

The KMP Algorithm (cont.)

What is its time complexity?

Because of backtracking, ai may be compared against

bj ,
bj−1,
. . ., and
b2

However, for these to happen, each of ai−j+2, ai−j+3, . . . , ai−1

was compared against the corresponding character in
b1b2 . . . bj−1 just once.
We may re-assign the costs of comparing ai against
bj−1, bj−2, . . . , b2 to those of comparing ai−j+2ai−j+3 . . . ai−1

against b1b2 . . . bj−1.

Every ai is incurred the cost of at most two comparisons.

So, the time complexity is O(n).

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 14 / 18

The KMP Algorithm (cont.)

What is its time complexity?
Because of backtracking, ai may be compared against

bj ,
bj−1,
. . ., and
b2

However, for these to happen, each of ai−j+2, ai−j+3, . . . , ai−1

was compared against the corresponding character in
b1b2 . . . bj−1 just once.
We may re-assign the costs of comparing ai against
bj−1, bj−2, . . . , b2 to those of comparing ai−j+2ai−j+3 . . . ai−1

against b1b2 . . . bj−1.

Every ai is incurred the cost of at most two comparisons.

So, the time complexity is O(n).

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 14 / 18

The KMP Algorithm (cont.)

What is its time complexity?
Because of backtracking, ai may be compared against

bj ,
bj−1,
. . ., and
b2

However, for these to happen, each of ai−j+2, ai−j+3, . . . , ai−1

was compared against the corresponding character in
b1b2 . . . bj−1 just once.

We may re-assign the costs of comparing ai against
bj−1, bj−2, . . . , b2 to those of comparing ai−j+2ai−j+3 . . . ai−1

against b1b2 . . . bj−1.

Every ai is incurred the cost of at most two comparisons.

So, the time complexity is O(n).

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 14 / 18

The KMP Algorithm (cont.)

What is its time complexity?
Because of backtracking, ai may be compared against

bj ,
bj−1,
. . ., and
b2

However, for these to happen, each of ai−j+2, ai−j+3, . . . , ai−1

was compared against the corresponding character in
b1b2 . . . bj−1 just once.
We may re-assign the costs of comparing ai against
bj−1, bj−2, . . . , b2 to those of comparing ai−j+2ai−j+3 . . . ai−1

against b1b2 . . . bj−1.

Every ai is incurred the cost of at most two comparisons.

So, the time complexity is O(n).

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 14 / 18

The KMP Algorithm (cont.)

What is its time complexity?
Because of backtracking, ai may be compared against

bj ,
bj−1,
. . ., and
b2

However, for these to happen, each of ai−j+2, ai−j+3, . . . , ai−1

was compared against the corresponding character in
b1b2 . . . bj−1 just once.
We may re-assign the costs of comparing ai against
bj−1, bj−2, . . . , b2 to those of comparing ai−j+2ai−j+3 . . . ai−1

against b1b2 . . . bj−1.

Every ai is incurred the cost of at most two comparisons.

So, the time complexity is O(n).

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 14 / 18

String Editing

Problem

Given two strings A (= a1a2 · · · an) and B (= b1b2 · · · bm), find the
minimum number of changes required to change A character by
character such that it becomes equal to B.

Three types of changes (or edit steps) allowed: (1) insert, (2) delete,
and (3) replace.

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 15 / 18

String Editing (cont.)

Let C (i , j) denote the minimum cost of changing A(i) to B(j), where
A(i) = a1a2 · · · ai and B(j) = b1b2 · · · bj .

For i = 0 or j = 0,
C (i , 0) = i
C (0, j) = j

For i > 0 and j > 0,

C (i , j) = min


C (i − 1, j) + 1 (deleting ai)
C (i , j − 1) + 1 (inserting bj)
C (i − 1, j − 1) + 1 (ai → bj)
C (i − 1, j − 1) (ai = bj)

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 16 / 18

String Editing (cont.)

j

i C (i , j)

Figure: The dependencies of C (i , j).
Source: redrawn from [Manber 1989, Figure 6.26].

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 17 / 18

String Editing (cont.)

Algorithm Minimum Edit Distance (A, n,B ,m);
for i := 0 to n do C [i , 0] := i ;
for j := 1 to m do C [0, j] := j ;
for i := 1 to n do

for j := 1 to m do
x := C [i − 1, j] + 1;
y := C [i , j − 1] + 1;
if ai = bj then

z := C [i − 1, j − 1]
else

z := C [i − 1, j − 1] + 1;
C [i , j] := min(x , y , z)

Its time complexity is clearly O(mn).

Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 18 / 18

String Editing (cont.)

Algorithm Minimum Edit Distance (A, n,B ,m);
for i := 0 to n do C [i , 0] := i ;
for j := 1 to m do C [0, j] := j ;
for i := 1 to n do

for j := 1 to m do
x := C [i − 1, j] + 1;
y := C [i , j − 1] + 1;
if ai = bj then

z := C [i − 1, j − 1]
else

z := C [i − 1, j − 1] + 1;
C [i , j] := min(x , y , z)

Its time complexity is clearly O(mn).
Yih-Kuen Tsay (IM.NTU) String Processing Algorithms 2022 18 / 18

	Data Compression
	String Matching
	String Editing

